1
|
Alhazzani K, Alanazi AZ, Ibrahim H, Mostafa AM, Barker J, Mahmoud AM, El-Wekil MM, Ali AMBH. L-asparaginase-mediated pH shift and carbon dot fluorescence modulation: A sensitive ratiometric method for quantifying L-asparagine in diverse potato varieties under variable storage conditions. Food Chem 2025; 463:141396. [PMID: 39342740 DOI: 10.1016/j.foodchem.2024.141396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
This study presents a novel and selective method for the determination of l-asparagine in diverse potato varieties under various storage conditions. L-asparagine levels serve as a crucial indicator for acrylamide formation, a hazardous substance in processed potato products. The fluorometric method utilized blue-emitting CDs (B-CDs), orange-emitting CDs (O-CDs), and the enzyme L-asparaginase for ratiometric detection of L-asparagine. Upon enzymatic hydrolysis of L-asparagine by L-asparaginase, liberated ammonia induced a pH increase in the reaction medium. This pH shift enhanced the fluorescence of B-CDs while simultaneously decreasing that of O-CDs, enabling sensitive and selective L-asparagine quantification. Comprehensive characterization of the CDs was performed using various spectroscopic techniques and transmission electron microscopy. The method demonstrated excellent sensitivity (LOD = 0.31 μM) and a wide linear range (1.0-50.0 μM). When the method was applied to potato samples, high recovery values (98.00-100.33 %) with low relative standard deviations (RSDs) were achieved, confirming the accuracy and precision of the method. The approach was employed to determine L-asparagine levels in three potato varieties (Lady Rosetta, Spunta, and Nicola) under different storage temperatures and durations. This method provides a valuable tool for monitoring L-asparagine content in potatoes, potentially aiding in the mitigation of acrylamide formation during processing. The robust performance and simplicity of the proposed technique make it suitable for routine analysis in both research and industrial applications within the potato industry.
Collapse
Affiliation(s)
- Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hossieny Ibrahim
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt; School of Biotechnology, Badr University in Assiut, Assiut 2014101, Egypt
| | - Aya M Mostafa
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt; School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston-upon-Thames, London KT1 2EE, UK
| | - James Barker
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston-upon-Thames, London KT1 2EE, UK
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Al-Montaser Bellah H Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
2
|
Wu S, Fang L, Li Y, Wang HB, Zhang H. A Fluorescence Turn On-off-on Method for Sensitive Detection of Sn 2+ and Glycine Using Waste Eggshell Membrane Derived Carbon Nanodots as Probe. J Fluoresc 2023; 33:1505-1513. [PMID: 36763295 DOI: 10.1007/s10895-022-03133-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 02/11/2023]
Abstract
Changes in Sn2+ and glycine levels are relevant to many important physiological procedures in human health. However, investigation of their physiological functions is limited because few versatile methods towards Sn2+ and glycine detection have been developed. In this work, a fluorescence turn on-off-on strategy was firstly constructed for rapid and sensitive detection of Sn2+ and glycine through the specific binding between Sn2+ and glycine. Carbon nanodots (CDs) with a quantum yield of 19.5% were synthesized by utilizing inner film of waste eggshell as carbon source and employed as fluorescent probe. In the presence of Sn2+, the fluorescence of CDs was quenched by Sn2+ via the primary inner filter effect (IFE). However, the binding between Sn2+ and glycine prevented the IFE between Sn2+ and CDs, resulting in fluorescence recovery of CDs. Under optimized conditions, the fluorescent response of CDs displayed good linear relationships with the concentrations of Sn2+ in the range of 10-200 µM and 200-5000 µM, and the limit of detection (LOD) was 2.4 µM. For glycine detection, a good linear relationship was obtained in the concentration range of 5-1000 µM with a low LOD down to 0.76 µM. Moreover, the practicability of the assay was also demonstrated by measuring glycine content in human serum samples. This work provides an economical, green and fast method for biological analysis of Sn2+ and glycine.
Collapse
Affiliation(s)
- Sifei Wu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Linxia Fang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, People's Republic of China.
| | - Yihan Li
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Hongding Zhang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, People's Republic of China.
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
3
|
Nakatsuka-Mori T, Sato D, Aoki H. Improvement of substrate recognition in branched-chain aminoacyl-tRNA synthetases from Escherichia coli under conditions of pyrophosphate amplification. J Biosci Bioeng 2022; 133:436-443. [PMID: 35216933 DOI: 10.1016/j.jbiosc.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/16/2022] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
Abstract
Isoleucyl-tRNA synthetase (IleRS), leucyl-tRNA synthetase (LeuRS), and valyl-tRNA synthetase (ValRS) are enzymes that have potential for the determination of l-isoleucine, l-leucine, and l-valine in food products and plasma. However, the disadvantages of these enzymes are their specificity and sensitivity. Here, we examined the substrate specificity of IleRS, LeuRS, and ValRS under various conditions of pyrophosphate amplification to improve their specificity and sensitivity. The amount of pyrophosphate produced in IleRS, LeuRS, and ValRS reactions was amplified after the addition of excess adenosine-5'-triphosphate and magnesium ions, and was approximately 9-, 8-, and 7-fold higher, respectively, for each of the initial l-amino acid substrates (50 μM). However, in addition to their target amino acids, IleRS, LeuRS, and ValRS also reacted with l-valine, l-lysine, and l-threonine, respectively. This substrate misrecognition was overcome by making the reaction pH more acidic and by increasing the magnesium ion concentration. The pyrophosphate amplification in IleRS, LeuRS, and ValRS reactions resulted in the production of p1, p4-di (adenosine) 5'-tetraphosphate. We also observed a strong positive correlation (R = 0.99) between the amount of pyrophosphate produced and the initial concentration of l-amino acid with 5 and 50 μM l-isoleucine, l-leucine, and l-valine. Our results suggest that amino acid assays using IleRS, LeuRS, and ValRS are promising methods to accurately measure l-valine, l-isoleucine, and l-leucine in food products and plasma.
Collapse
Affiliation(s)
- Tomoko Nakatsuka-Mori
- Research Laboratory, Ikeda Food Research Co., Ltd., 95-7 Minooki-cho, Fukuyama, Hiroshima 721-0956, Japan
| | - Daisuke Sato
- Research Laboratory, Ikeda Food Research Co., Ltd., 95-7 Minooki-cho, Fukuyama, Hiroshima 721-0956, Japan
| | - Hideyuki Aoki
- Research Laboratory, Ikeda Food Research Co., Ltd., 95-7 Minooki-cho, Fukuyama, Hiroshima 721-0956, Japan.
| |
Collapse
|
4
|
Guo J, Guo M. Progress in Design and Application of Supramolecular Fluorescent Systems Based on Difluoroboron-Dipyrromethene and Macrocyclic Compounds. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Pérez-Ràfols C, Liu Y, Wang Q, Cuartero M, Crespo GA. Why Not Glycine Electrochemical Biosensors? SENSORS (BASEL, SWITZERLAND) 2020; 20:E4049. [PMID: 32708149 PMCID: PMC7411573 DOI: 10.3390/s20144049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 01/26/2023]
Abstract
Glycine monitoring is gaining importance as a biomarker in clinical analysis due to its involvement in multiple physiological functions, which results in glycine being one of the most analyzed biomolecules for diagnostics. This growing demand requires faster and more reliable, while affordable, analytical methods that can replace the current gold standard for glycine detection, which is based on sample extraction with subsequent use of liquid chromatography or fluorometric kits for its quantification in centralized laboratories. This work discusses electrochemical sensors and biosensors as an alternative option, focusing on their potential application for glycine determination in blood, urine, and cerebrospinal fluid, the three most widely used matrices for glycine analysis with clinical meaning. For electrochemical sensors, voltammetry/amperometry is the preferred readout (10 of the 13 papers collected in this review) and metal-based redox mediator modification is the predominant approach for electrode fabrication (11 of the 13 papers). However, none of the reported electrochemical sensors fulfill the requirements for direct analysis of biological fluids, most of them lacking appropriate selectivity, linear range of response, and/or capability of measuring at physiological conditions. Enhanced selectivity has been recently reported using biosensors (with an enzyme element in the electrode design), although this is still a very incipient approach. Currently, despite the benefits of electrochemistry, only optical biosensors have been successfully reported for glycine detection and, from all the inspected works, it is clear that bioengineering efforts will play a key role in the embellishment of selectivity and storage stability of the sensing element in the sensor.
Collapse
Affiliation(s)
| | | | | | | | - Gastón A. Crespo
- Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden; (C.P.-R.); (Y.L.); (Q.W.); (M.C.)
| |
Collapse
|
6
|
Microfluidic Paper-Based Analytical Device for Histidine Determination. Appl Biochem Biotechnol 2020; 192:812-821. [PMID: 32592084 DOI: 10.1007/s12010-020-03365-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/22/2020] [Indexed: 10/24/2022]
Abstract
A laminated paper-based analytical device (LPAD) for histidine detection was fabricated from a chromatography filtration paper and laminate films. Histidine recognition was effected by histidyl-tRNA synthetase (HisRS), and its detection was signaled colorimetrically based on the molybdenum blue reaction. The analytical conditions and detectable concentration range of histidine were examined. The method provided selective quantification from 1 to 100 μM histidine. LPAD fabrication is considerably simple, involving only the craft-cutting of the chromatography filtration paper and laminate film, and is cost-effective.
Collapse
|
7
|
Le D, Dhamecha D, Gonsalves A, Menon JU. Ultrasound-Enhanced Chemiluminescence for Bioimaging. Front Bioeng Biotechnol 2020; 8:25. [PMID: 32117914 PMCID: PMC7016203 DOI: 10.3389/fbioe.2020.00025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Tissue imaging has emerged as an important aspect of theragnosis. It is essential not only to evaluate the degree of the disease and thus provide appropriate treatments, but also to monitor the delivery of administered drugs and the subsequent recovery of target tissues. Several techniques including magnetic resonance imaging (MRI), computational tomography (CT), acoustic tomography (AT), biofluorescence (BF) and chemiluminescence (CL), have been developed to reconstruct three-dimensional images of tissues. While imaging has been achieved with adequate spatial resolution for shallow depths, challenges still remain for imaging deep tissues. Energy loss is usually observed when using a magnetic field or traditional ultrasound (US), which leads to a need for more powerful energy input. This may subsequently result in tissue damage. CT requires exposure to radiation and a high dose of contrast agent to be administered for imaging. The BF technique, meanwhile, is affected by strong scattering of light and autofluorescence of tissues. The CL is a more selective and sensitive method as stable luminophores are produced from physiochemical reactions, e.g. with reactive oxygen species. Development of near infrared-emitting luminophores also bring potential for application of CL in deep tissues and whole animal studies. However, traditional CL imaging requires an enhancer to increase the intensity of low-level light emissions, while reducing the scattering of emitted light through turbid tissue environment. There has been interest in the use of focused ultrasound (FUS), which can allow acoustic waves to propagate within tissues and modulate chemiluminescence signals. While light scattering is decreased, the spatial resolution is increased with the assistance of US. In this review, chemiluminescence detection in deep tissues with assistance of FUS will be highlighted to discuss its potential in deep tissue imaging.
Collapse
Affiliation(s)
| | | | | | - Jyothi U. Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
8
|
Nakatsuka T, Aoki H, Kida M, Kugimiya A. Pyrophosphate amplification reaction for measuring amino acid concentrations with high sensitivity using aminoacyl-tRNA synthetase from Escherichia coli. Biosci Biotechnol Biochem 2019; 83:1616-1623. [PMID: 31032741 DOI: 10.1080/09168451.2019.1608801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
To measure amino acid concentrations with high sensitivity, the pyrophosphate amplification reaction conditions of histidyl-tRNA synthetase (HisRS) and tyrosyl-tRNA synthetase (TyrRS) were examined. The amount of pyrophosphate produced by reactions involving HisRS and TyrRS was amplified compared with the amount of the initial substrate L-amino acid after the addition of excess adenosine-5'-triphosphate and magnesium ions, with incubation at 50°C in an alkaline pH. The amount of pyrophosphate produced in the HisRS and TyrRS reactions was approximately 24- and 16-fold higher than the initial amount of L-His and L-Tyr, respectively. The pyrophosphate amplification reactions involving HisRS and TyrRS showed high substrate specificity for L-His and L-Tyr, respectively. Products of pyrophosphate amplification were identified as p1, p4-di(adenosine) 5'-tetraphosphate, and adenosine-5'-monophosphate using high-performance liquid chromatography. A strong positive correlation was observed for 0 to 50 μM of L-His and L-Tyr in the pyrophosphate amplification reaction (R = 0.98 and R = 1.00, respectively). Abbreviations: L-His: L-histidine; L-Tyr: L-tyrosine; aaRSs: aminoacyl-tRNA synthetases; ATP: adenosine-5'-triphosphate; aminoacyl-AMP-aaRS: aminoacyl-adenylate intermediate; Ap4A, P1, P4-di(adenosine) 5'-tetraphosphate; AMP: adenosine-5'-monophosphate; PAR: pyrophosphate amplification rate.
Collapse
Affiliation(s)
- Tomoko Nakatsuka
- a Research Laboratory, Ikeda Food Research Co., Ltd ., Fukuyama, Hiroshima , Japan
| | - Hideyuki Aoki
- a Research Laboratory, Ikeda Food Research Co., Ltd ., Fukuyama, Hiroshima , Japan
| | - Mikiko Kida
- a Research Laboratory, Ikeda Food Research Co., Ltd ., Fukuyama, Hiroshima , Japan
| | - Akimitsu Kugimiya
- b Department of Biomedical Information Sciences, Graduate School of Information Sciences, Hiroshima City University , Hiroshima , Japan
| |
Collapse
|
9
|
The Profile of Plasma Free Amino Acids in Type 2 Diabetes Mellitus with Insulin Resistance: Association with Microalbuminuria and Macroalbuminuria. Appl Biochem Biotechnol 2019; 188:854-867. [DOI: 10.1007/s12010-019-02956-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/11/2019] [Indexed: 01/05/2023]
|
10
|
Novel Competitive Chemiluminescence DNA Assay Based on Fe3O4@SiO2@Au-Functionalized Magnetic Nanoparticles for Sensitive Detection of p53 Tumor Suppressor Gene. Appl Biochem Biotechnol 2018; 187:152-162. [DOI: 10.1007/s12010-018-2808-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/03/2018] [Indexed: 10/25/2022]
|
11
|
Sensitive determination of bromhexine hydrochloride based on its quenching effect on luminol/H2
O2
electrochemiluminescence system. LUMINESCENCE 2018; 33:698-703. [DOI: 10.1002/bio.3466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 01/10/2023]
|
12
|
Kugimiya A, Konishi H, Fukada R. Flow Analysis of Amino Acids by Using a Newly Developed Aminoacyl-tRNA Synthetase-Immobilized, Small Reactor Column-Based Assay. Appl Biochem Biotechnol 2015; 178:924-31. [PMID: 26554858 DOI: 10.1007/s12010-015-1918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 11/03/2015] [Indexed: 11/30/2022]
Abstract
Abnormal concentrations of amino acids in blood and urine can be indicative of several diseases, including cancer and diabetes. Therefore, analyses that examine amino acid concentrations are useful for the diagnosis of such diseases. In this study, we developed an enzyme-immobilized, small reactor column for flow analysis of amino acid concentrations. For the recognition of asparagine and lysine, asparaginyl-tRNA synthetase and lysyl-tRNA synthase were immobilized onto microparticles, respectively, and coupled with coloration reagents for spectrophotometric detection. This assay has some advantages in the analytical field, such as the ability to detect small amounts of analyte, allowing for the use of a small reaction volume, and ensuring a rapid and efficient reaction rate. This approach provided selective quantitation of up to 480 μM of asparagine and lysine in 200 mM Tris-HCl buffer (pH 8.0).
Collapse
Affiliation(s)
- Akimitsu Kugimiya
- Center for Industry and Public Relations, Hiroshima City University, 3-8-24 Senda-machi, Naka-ku, Hiroshima, 730-0052, Japan.
| | - Hidenori Konishi
- Center for Industry and Public Relations, Hiroshima City University, 3-8-24 Senda-machi, Naka-ku, Hiroshima, 730-0052, Japan
| | - Rie Fukada
- Center for Industry and Public Relations, Hiroshima City University, 3-8-24 Senda-machi, Naka-ku, Hiroshima, 730-0052, Japan
| |
Collapse
|