1
|
Núñez-Navarro N, Salazar Muñoz J, Castillo F, Ramírez-Sarmiento CA, Poblete-Castro I, Zacconi FC, Parra LP. Discovery of New Phenylacetone Monooxygenase Variants for the Development of Substituted Indigoids through Biocatalysis. Int J Mol Sci 2022; 23:ijms232012544. [PMID: 36293414 PMCID: PMC9604523 DOI: 10.3390/ijms232012544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Indigoids are natural pigments obtained from plants by ancient cultures. Romans used them mainly as dyes, whereas Asian cultures applied these compounds as treatment agents for several diseases. In the modern era, the chemical industry has made it possible to identify and develop synthetic routes to obtain them from petroleum derivatives. However, these processes require high temperatures and pressures and large amounts of solvents, acids, and alkali agents. Thus, enzyme engineering and the development of bacteria as whole-cell biocatalysts emerges as a promising green alternative to avoid the use of these hazardous materials and consequently prevent toxic waste generation. In this research, we obtained two novel variants of phenylacetone monooxygenase (PAMO) by iterative saturation mutagenesis. Heterologous expression of these two enzymes, called PAMOHPCD and PAMOHPED, in E. coli was serendipitously found to produce indigoids. These interesting results encourage us to characterize the thermal stability and enzyme kinetics of these new variants and to evaluate indigo and indirubin production in a whole-cell system by HPLC. The highest yields were obtained with PAMOHPCD supplemented with L-tryptophan, producing ~3000 mg/L indigo and ~130.0 mg/L indirubin. Additionally, both enzymes could oxidize and produce several indigo derivatives from substituted indoles, with PAMOHPCD being able to produce the well-known Tyrian purple. Our results indicate that the PAMO variants described herein have potential application in the textile, pharmaceutics, and semiconductors industries, prompting the use of environmentally friendly strategies to obtain a diverse variety of indigoids.
Collapse
Affiliation(s)
- Nicolás Núñez-Navarro
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Javier Salazar Muñoz
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
| | - Francisco Castillo
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - César A. Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Ignacio Poblete-Castro
- Biosystems Engineering Laboratory, Department of Chemical and Bioprocess Engineering, Universidad de Santiago de Chile (USACH), Santiago 8350709, Chile
| | - Flavia C. Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
- Correspondence: (F.C.Z.); (L.P.P.)
| | - Loreto P. Parra
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: (F.C.Z.); (L.P.P.)
| |
Collapse
|
2
|
Santos MCD, Bicas JL. Natural blue pigments and bikaverin. Microbiol Res 2020; 244:126653. [PMID: 33302226 DOI: 10.1016/j.micres.2020.126653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/26/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
In last years, the main studied microbial sources of natural blue pigments have been the eukaryotic algae, Rhodophytes and Cryptophytes, and the cyanobacterium Arthrospira (Spirulina) platensis, responsible for the production of phycocyanin, one of the most important blue compounds approved for food and cosmetic use. Recent research also includes the indigoidine pigment from the bacteria Erwinia, Streptomyces and Photorhabdus. Despite these advances, there are still few options of microbial blue pigments reported so far, but the interest in these products is high due to the lack of stable natural blue pigments in nature. Filamentous fungi are particularly attractive for their ability to produce pigments with a wide range of colors. Bikaverin is a red metabolite present mainly in species of the genus Fusarium. Although originally red, the biomass containing bikaverin changes its color to blue after heat treatment, through a mechanism still unknown. In addition to the special behavior of color change by thermal treatment, bikaverin has beneficial biological properties, such as antimicrobial and antiproliferative activities, which can expand its use for the pharmaceutical and medical sectors. The present review addresses the production natural blue pigments and focuses on the properties of bikaverin, which can be an important source of blue pigment with potential applications in the food industry and in other industrial sectors.
Collapse
|
3
|
Indole Degradation in a Model System and in Poultry Manure by Acinetobacter spp. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Indole degradation in a model system and in poultry manure was studied using an enrichment culture of two Acinetobacter species; Acinetobacter toweneri NTA1-2A and Acinetobacter guillouiae TAT1-6A. Degradation of indole was quantified using reverse phase high performance liquid chromatography (HPLC). The two strains were capable of degrading initial concentrations of indole ranging from 58.58–300 mg/L. The degradation efficiency was 66.36% (NTA1-2A), 94.87% (TAT1-6A), and 96.00% (mix) in 6 days when the initial concentration <300 mg/L. The strains were tested for enzymatic activity using 120 mg/L indole. The enzyme extracts of NTA1-2A and TAT1-6A from culture medium degraded indole completely, and no appreciable change of indole concentration was witnessed in the control group. The NTA1-2A, TAT1-6A, and the mix of strains were also used for in vivo poultry manure fermentation and removed 78.67%, 83.28%, and 83.70% of indole, respectively in 8 d. The strains showed a statistically significant difference (p < 0.05) in indole removal efficiency compared with the control, but no significant difference between the two strains and the mix in indole removal capacity. We concluded that A. toweneri NTA1-2A and A. guillouiae TAT1-6A are promising strains to remove indole and its derivatives to control the notorious odor in poultry and other livestock industries.
Collapse
|
4
|
Ma Q, Zhang X, Qu Y. Biodegradation and Biotransformation of Indole: Advances and Perspectives. Front Microbiol 2018; 9:2625. [PMID: 30443243 PMCID: PMC6221969 DOI: 10.3389/fmicb.2018.02625] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/15/2018] [Indexed: 11/17/2022] Open
Abstract
Indole is long regarded as a typical N-heterocyclic aromatic pollutant in industrial and agricultural wastewater, and recently it has been identified as a versatile signaling molecule with wide environmental distributions. An exponentially growing number of researches have been reported on indole due to its significant roles in bacterial physiology, pathogenesis, animal behavior and human diseases. From the viewpoint of both environmental bioremediation and biological studies, the researches on metabolism and fates of indole are important to realize environmental treatment and illuminate its biological function. Indole can be produced from tryptophan by tryptophanase in many bacterial species. Meanwhile, various bacterial strains have obtained the ability to transform and degrade indole. The characteristics and pathways for indole degradation have been investigated for a century, and the functional genes for indole aerobic degradation have also been uncovered recently. Interestingly, many oxygenases have proven to be able to oxidize indole to indigo, and this historic and motivating case for biological applications has attracted intensive attention for decades. Herein, the bacteria, enzymes and pathways for indole production, biodegradation and biotransformation are systematically summarized, and the future researches on indole-microbe interactions are also prospected.
Collapse
Affiliation(s)
- Qiao Ma
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Xuwang Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| |
Collapse
|
5
|
Zhang X, Qu Y, Ma Q, Li S, Dai C, Lian S, Zhou J. Performance and Microbial Community Analysis of Bioaugmented Activated Sludge System for Indigo Production from Indole. Appl Biochem Biotechnol 2018; 187:1437-1447. [DOI: 10.1007/s12010-018-2879-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/09/2018] [Indexed: 11/29/2022]
|
6
|
Analysis of the Metabolites of Indole Degraded by an Isolated Acinetobacter pittii L1. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2564363. [PMID: 29392129 PMCID: PMC5748082 DOI: 10.1155/2017/2564363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/19/2017] [Indexed: 11/18/2022]
Abstract
Indole and its derivatives are typical nitrogen heterocyclic compounds and have been of immense concern since they are known for the risk of their toxic, recalcitrant, and carcinogenic properties for human and ecological environment. In this study, a Gram-negative bacterial strain of eliminating indole was isolated from a coking wastewater. The strain was confirmed as Acinetobacter pittii L1 based on the physiological and biochemical characterization and 16S ribosomal DNA (rDNA) gene sequence homology. 400 mg/L indole could be completely removed within 48 h by the strain on the optimum condition of 37°C, pH 7.4, and 150 rpm. The organic nitrogen was converted to NH3-N and then to NO3- and the organic carbon was partially transferred to CO2 during the indole biodegradation. The metabolic pathways were proposed to explain the indole degradation based on the liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of indigo, 4-(3-Hydroxy-1H-pyrrol-2-yl)-2-oxo-but-3-enoic acid, and isatin. The toxicity of the biodegradation products was evaluated using the Microtox test, which revealed that the metabolites were more toxic than indole. Our research holds promise for the potential application of Acinetobacter pittii L1 for NHCs degradation, production of indigoids, and soil remediation as well as treatment of indole containing wastewater.
Collapse
|
7
|
Genome Sequence of an Indigoid-Producing Strain, Pseudomonas sp. PI1. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00622-15. [PMID: 26067966 PMCID: PMC4463530 DOI: 10.1128/genomea.00622-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas sp. strain PI1 can cometabolize indole in the presence of phenol to produce various indigoids. Here, we present a 7.2-Mb draft genome sequence of strain PI1, which may provide insight into the study of phenol-indole cometabolism and its application in aromatic bioremediation and wastewater treatment processes.
Collapse
|