1
|
Zulekha R, Mubashar M, Muzamil Sultan M, Wang Z, Li J, Zhang X. An assessment of the autotrophic/heterotrophic synergism in microalgae under mixotrophic mode and its contribution in high-rate phosphate recovery from wastewater. BIORESOURCE TECHNOLOGY 2024; 413:131450. [PMID: 39265752 DOI: 10.1016/j.biortech.2024.131450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
Dual carbon metabolisms and the synergism contribute to improving nutrient recovery under mixotrophy. However, how synergism influences nutrient recovery has yet to be understood, which is revealed in the current study. Due to dual carbon metabolisms and synergism,the PO4--P recovery rate under mixotrophy reached 0.34 mg L-1 h-1. Due to the internal cycling of respiratory CO2, the mutualistic index (MI) in terms of synergism helped Scenedesmus accumulate 27.49 % more biomass under mixotrophy than sum of the two controls. In contrast, MI contributed 0.26 g L-1 d-1 to the total modeled mixotrophic productivity of 1.15 g L-1 d-1. To total modeled PO4--P recovery, mixotrophic-auto, and mixotrophic-hetero shares were 42 % and 58 %. The synergism under mixotrophy contributed 20 % in total PO4--P recovery. The PO4--P recovery rate under mixotrophywas comparable to other biological P removal methods. These findings emphasize the potential of synergism in improving productivityand promoting resource recovery for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Rabail Zulekha
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Mubashar
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Muhammad Muzamil Sultan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zimin Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xuezhi Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
2
|
Hackman J, Woodley A, Carter D, Strahm B, Averill C, Vilgalys R, Garcia K, Cook R. Fungal biomass and ectomycorrhizal community assessment of phosphorus responsive Pinus taeda plantations. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1401427. [PMID: 38863761 PMCID: PMC11165416 DOI: 10.3389/ffunb.2024.1401427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024]
Abstract
Ectomycorrhizal fungi and non-ectomycorrhizal fungi are responsive to changes in environmental and nutrient availabilities. Although many species of ectomycorrhizas are known to enhance the uptake of phosphorus and other nutrients for Pinus taeda, it is not understood how to optimize these communities to have tangible effects on plantation silviculture and P use efficiency. The first step of this process is the identification of native fungi present in the system that are associated with P. taeda and influence P uptake efficiency. We used sand-filled mesh bags baited with finely ground apatite to sample ectomycorrhizal and non-ectomycorrhizal fungi associated with the rhizosphere of P-responsive P. taeda under several field conditions. Mesh bags were assessed for biomass accumulation over three years using a single three-month burial period pre-harvest and three six-month burial periods post-planting. Amplicon sequencing assessed ectomycorrhizal and non-ectomycorrhizal communities between phosphorus treatments, sites, mesh bags, and the rhizosphere of actively growing P. taeda in the field. We found biomass accumulation within the mesh bags was inversely related to increasing phosphorus fertilization (carryover) rates from pre-harvest to post-planting. Up to 25% increases in total biomass within the bags were observed for bags baited with P. Taxonomic richness was highest in Alfisol soils treated with phosphorus from the previous rotation and lowest in the Spodosol regardless of phosphorus treatment.
Collapse
|
3
|
Błońska E, Jankowiak R, Lasota J, Krzemińska N, Zbyryt A, Ciach M. The role of chemical properties of the material deposited in nests of white stork in shaping enzymatic activity and fungal diversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2583-2594. [PMID: 38066283 PMCID: PMC10791925 DOI: 10.1007/s11356-023-31383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
Organic debris accumulated in bird nests creates a unique environment for organisms, including microbes. Built from various plant materials that are typically enriched by animal residues, bird nest favours the development of various fungal groups. The aim of this study was to investigate the chemical properties of the material deposited in the white stork Ciconia ciconia nests and the link between extracellular enzyme activity and the diversity and composition of culturable fungi. Our findings revealed low C/P and N/P ratio values in the nest materials, which indicate a high P availability. Nest material C/N/P ratio ranged from 67/8/1 to 438/33/1. Enzymatic activity strongly correlated with the content of carbon, nitrogen, and pH of the material deposited in the nests. A total of 2726 fungal isolates were obtained from the nests, from which 82 taxa were identified based on morphology and DNA sequence data. The study indicates that white stork nests are microhabitat characterised by diverse chemical and biochemical properties. We found relationship between the fungal richness and diversity and the C/P and N/P ratios of materials from the nests. Our study showed that culturable fungi occurred frequently in materials with high levels of C, N, and P, as well as high concentrations of base alkaline elements (Ca, Mg, and K).
Collapse
Affiliation(s)
- Ewa Błońska
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture, Al. 29 Listopada 46, 31-425, Krakow, Poland.
| | - Robert Jankowiak
- Department of Forest Ecosystem Protection, University of Agriculture, 29 Listopada 46, 31-425, Krakow, Poland
| | - Jarosław Lasota
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture, Al. 29 Listopada 46, 31-425, Krakow, Poland
| | - Natalia Krzemińska
- Department of Forest Ecosystem Protection, University of Agriculture, 29 Listopada 46, 31-425, Krakow, Poland
| | - Adam Zbyryt
- Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland
| | - Michał Ciach
- Department of Forest Biodiversity, Faculty of Forestry, University of Agriculture, Al. 29 Listopada 46, 31-425, Krakow, Poland
| |
Collapse
|
4
|
Bandini F, Vaccari F, Soldano M, Piccinini S, Misci C, Bellotti G, Taskin E, Cocconcelli PS, Puglisi E. Rigid bioplastics shape the microbial communities involved in the treatment of the organic fraction of municipal solid waste. Front Microbiol 2022; 13:1035561. [PMID: 36439796 PMCID: PMC9691671 DOI: 10.3389/fmicb.2022.1035561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 11/03/2023] Open
Abstract
While bioplastics are gaining wide interest in replacing conventional plastics, it is necessary to understand whether the treatment of the organic fraction of municipal solid waste (OFMSW) as an end-of-life option is compatible with their biodegradation and their possible role in shaping the microbial communities involved in the processes. In the present work, we assessed the microbiological impact of rigid polylactic acid (PLA) and starch-based bioplastics (SBB) spoons on the thermophilic anaerobic digestion and the aerobic composting of OFMSW under real plant conditions. In order to thoroughly evaluate the effect of PLA and SBB on the bacterial, archaeal, and fungal communities during the process, high-throughput sequencing (HTS) technology was carried out. The results suggest that bioplastics shape the communities' structure, especially in the aerobic phase. Distinctive bacterial and fungal sequences were found for SBB compared to the positive control, which showed a more limited diversity. Mucor racemosus was especially abundant in composts from bioplastics' treatment, whereas Penicillium roqueforti was found only in compost from PLA and Thermomyces lanuginosus in that from SBB. This work shed a light on the microbial communities involved in the OFMSW treatment with and without the presence of bioplastics, using a new approach to evaluate this end-of-life option.
Collapse
Affiliation(s)
- Francesca Bandini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| | - Filippo Vaccari
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| | - Mariangela Soldano
- Centro Ricerche Produzioni Animali S.p.A. (CRPA), Reggio Emilia, RE, Italy
| | - Sergio Piccinini
- Centro Ricerche Produzioni Animali S.p.A. (CRPA), Reggio Emilia, RE, Italy
| | - Chiara Misci
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| | - Gabriele Bellotti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| | - Eren Taskin
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| | - Pier Sandro Cocconcelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, PC, Italy
| |
Collapse
|
5
|
Enhancing biomass yield, nutrient removal, and decolorization from soy sauce wastewater using an algae-fungus consortium. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Al-Mohaimeed AM, Abbasi AM, Ali MA, Shazhni JRA. Detection of trizole contaminated waste water using biocatalyst and effective biodegradation potential of flubendiamide. ENVIRONMENTAL RESEARCH 2022; 206:112264. [PMID: 34687753 DOI: 10.1016/j.envres.2021.112264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Flubendiamide is a new class of chemical pesticide with broad spectrum activity against lepidopteran pests. Due to limited approach and high specificity towards various non targeted organisms, the unrestricted application of this pesticide as a prominent alternate for organochlorine and organophosphate pesticides, causing serious environmental pollution. In this study, wastewater was used for the determination of microbial strains and pesticide degrading fungi. Microbial population and flubendiamide resistant fungal strains were characterized using enriched medium. Aerobic bacteria (6.38 ± 0.23 log CFU/mL), nitrifying bacteria (2.73 ± 0.31 CFU/mL), Lactobaillus (0.72 ± 0.03 log CFU/mL), actinomycetes (5.36 ± 0.27 log CFU/mL) and fungi (4.79 ± 0.22 log CFU/mL) were detected. The prominent fungi genera were, Fusarium, Trichoderma, Cladophialophora, Paecilomyces, Talaromyces, Penicillium, Aspergillus, Candida, Phyllosticta, Mycosphaerella, Ochroconis, and Mucor. Minimum inhibitory concentration of the rapidly growing organism (FR04) revealed its ability to tolerate up to 1250 mg/L flubendiamide concentration. Morphological, biochemical and molecular analysis revealed that the strain was Aspergillus terreus FR04. The residual pesticide was detected using a High Performance Liquid Chromatography (HPLC). High performance liquid chromatography analysis revealed that 89 ± 1.9% pesticide removal efficiency was observed in strain FR04 at optimized culture conditions (96 h, pH 6.5, 30 °C and 300 mg/L pesticide concentration). The strain FR04 degraded pollutants from the wastewater and improved water quality. A. terreu sFR04 is an indigenous fungus and has the ability to degrade trizole pesticides from the wastewater significantly.
Collapse
Affiliation(s)
- Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Arshad Mehmood Abbasi
- University of Gastronomic Sciences, 12042, Pollenzo, Italy; Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - J R Abima Shazhni
- Department of Biochemistry, Lekshmipuram College of Ars and Science, Affiliated to Manonmaniam Sundaranar University, Tamil Nadu, India.
| |
Collapse
|
7
|
Fazili ABA, Shah AM, Zan X, Naz T, Nosheen S, Nazir Y, Ullah S, Zhang H, Song Y. Mucor circinelloides: a model organism for oleaginous fungi and its potential applications in bioactive lipid production. Microb Cell Fact 2022; 21:29. [PMID: 35227264 PMCID: PMC8883733 DOI: 10.1186/s12934-022-01758-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
Microbial oils have gained massive attention because of their significant role in industrial applications. Currently plants and animals are the chief sources of medically and nutritionally important fatty acids. However, the ever-increasing global demand for polyunsaturated fatty acids (PUFAs) cannot be met by the existing sources. Therefore microbes, especially fungi, represent an important alternative source of microbial oils being investigated. Mucor circinelloides—an oleaginous filamentous fungus, came to the forefront because of its high efficiency in synthesizing and accumulating lipids, like γ-linolenic acid (GLA) in high quantity. Recently, mycelium of M. circinelloides has acquired substantial attraction towards it as it has been suggested as a convenient raw material source for the generation of biodiesel via lipid transformation. Although M. circinelloides accumulates lipids naturally, metabolic engineering is found to be important for substantial increase in their yields. Both modifications of existing pathways and re-formation of biosynthetic pathways in M. circinelloides have shown the potential to improve lipid levels. In this review, recent advances in various important metabolic aspects of M. circinelloides have been discussed. Furthermore, the potential applications of M. circinelloides in the fields of antioxidants, nutraceuticals, bioremediation, ethanol production, and carotenoids like beta carotene and astaxanthin having significant nutritional value are also deliberated.
Collapse
|
8
|
Mucoromycota fungi as powerful cell factories for modern biorefinery. Appl Microbiol Biotechnol 2021; 106:101-115. [PMID: 34889982 DOI: 10.1007/s00253-021-11720-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022]
Abstract
Biorefinery employing fungi can be a strategy for valorizing low-cost rest materials, by-products and wastes into several valuable bioproducts through the fungal fermentation. Mucoromycota fungi are soil fungi with a highly versatile metabolic system that positions them as powerful microbial cell factories for biorefinery applications. Lipids, pigments, chitin/chitosan, polyphosphates, ethanol, organic acids and enzymes are main Mucoromycota products that can be refined from the fermentation process and applied in nutrition, chemical or biofuel industries. In addition, Mucoromycota biomass can be used as it is for specific purposes, such as feed. Mucoromycota fungi can be employed in developing co-production processes, whereby several intra- and extracellular products are simultaneously formed in a single fermentation process, and, thus, economic viability of the process can be improved. This mini review provides a comprehensive overview over the recent advances in the production of valuable metabolites by Mucoromycota fungi and fermentation strategies which could be potentially applied in the industrial biorefinery settings. KEY POINTS: • Biorefineries utilizing Mucoromycota fungi as production cell factories can provide a wide range of bioproducts. • Mucoromycota fungi are able to perform co-production of various metabolites in a single fermentation process. • Versatile metabolism of Mucoromycota allows valorization of a various low-cost substrates such as wastes and rest materials.
Collapse
|
9
|
Luo L, Ye H, Zhang D, Gu JD, Deng O. The dynamics of phosphorus fractions and the factors driving phosphorus cycle in Zoige Plateau peatland soil. CHEMOSPHERE 2021; 278:130501. [PMID: 34126697 DOI: 10.1016/j.chemosphere.2021.130501] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 05/26/2023]
Abstract
Phosphorus (P) is an essential nutrient, limiting plant growth and microbial activity in many ecosystems. However, a few studies have been conducted to investigate P dynamics and the factors driving P dynamics in peatland soils. Therefore, this study chose Zoige Plateau peatland (the largest peatland in China) to reveal P dynamics and the possible driving factors through fractionating soil P and investigating a series of abiotic and biotic factors. It is found that season, peatland type, and soil depth could strongly affect P dynamics. H2O-P and NaHCO3-P (labile P) had lower content, while NaOH-P, HCl-P, Mix-P, and Residual-P (non-labile P) were the dominant fractions. Besides, the sum of P fractions was higher than the traditional measurement of total P, suggesting P storage might be underestimated in peatland soils. Moreover, it is observed that biotic factors affected P fractions more than abiotic factors, and fungi affected refractory P more than bacteria. This study provides essential information for understanding P cycling in peatland soils and emphasizes specific microbes related to P cycling, which should be paid more attention to in the future.
Collapse
Affiliation(s)
- Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China; College of Resources, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Haoyang Ye
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Danhua Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion Israel Institute of Technology, Shantou, 515063, PR China
| | - Ouping Deng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China; College of Resources, Sichuan Agricultural University, Chengdu, 611130, PR China.
| |
Collapse
|
10
|
Zeng X, Huang JJ, Hua B. Efficient phosphorus removal by a novel halotolerant fungus Aureobasidium sp. MSP8 and the application potential in saline industrial wastewater treatment. BIORESOURCE TECHNOLOGY 2021; 334:125237. [PMID: 33962162 DOI: 10.1016/j.biortech.2021.125237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Efficient halotolerant phosphorus accumulation microorganisms are of great significance for the treatment of high-salt wastewater. In this study, a halotolerant fungus strain named MSP8 was isolated and identified as Aureobasidium sp. Salinity resistance results showed that strain MSP8 can resist the salinity from 0% to 17%, and 77.2% phosphorus removal was achieved at the optimal salinity of 5%. The strain also showed wide environmental adaptability (pH of 3-7; temperature of 20-30 °C). Batch tests and scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS) characterization results verified the key role of extracellular polymeric substance (EPS) secreted by MSP8 in phosphorus removal. The actual brewery and chemical wastewater treatments exhibited that above 53.5% of phosphorus can be removed by MSP8. The excellent adaptation of MSP8 made it a potential candidate for phosphorus removal especially in saline wastewater treatment.
Collapse
Affiliation(s)
- Xiaoying Zeng
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre for Water and Environmental Safety, Nankai University, Tianjin 300071, PR China
| | - Jinhui Jeanne Huang
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre for Water and Environmental Safety, Nankai University, Tianjin 300071, PR China.
| | - Binbin Hua
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre for Water and Environmental Safety, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
11
|
Dzurendová S, Shapaval V, Tafintseva V, Kohler A, Byrtusová D, Szotkowski M, Márová I, Zimmermann B. Assessment of Biotechnologically Important Filamentous Fungal Biomass by Fourier Transform Raman Spectroscopy. Int J Mol Sci 2021; 22:6710. [PMID: 34201486 PMCID: PMC8269384 DOI: 10.3390/ijms22136710] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Oleaginous filamentous fungi can accumulate large amount of cellular lipids and biopolymers and pigments and potentially serve as a major source of biochemicals for food, feed, chemical, pharmaceutical, and transport industries. We assessed suitability of Fourier transform (FT) Raman spectroscopy for screening and process monitoring of filamentous fungi in biotechnology. Six Mucoromycota strains were cultivated in microbioreactors under six growth conditions (three phosphate concentrations in the presence and absence of calcium). FT-Raman and FT-infrared (FTIR) spectroscopic data was assessed in respect to reference analyses of lipids, phosphorus, and carotenoids by using principal component analysis (PCA), multiblock or consensus PCA, partial least square regression (PLSR), and analysis of spectral variation due to different design factors by an ANOVA model. All main chemical biomass constituents were detected by FT-Raman spectroscopy, including lipids, proteins, cell wall carbohydrates, and polyphosphates, and carotenoids. FT-Raman spectra clearly show the effect of growth conditions on fungal biomass. PLSR models with high coefficients of determination (0.83-0.94) and low error (approximately 8%) for quantitative determination of total lipids, phosphates, and carotenoids were established. FT-Raman spectroscopy showed great potential for chemical analysis of biomass of oleaginous filamentous fungi. The study demonstrates that FT-Raman and FTIR spectroscopies provide complementary information on main fungal biomass constituents.
Collapse
Affiliation(s)
- Simona Dzurendová
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (S.D.); (V.S.); (V.T.); (A.K.); (D.B.)
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (S.D.); (V.S.); (V.T.); (A.K.); (D.B.)
| | - Valeria Tafintseva
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (S.D.); (V.S.); (V.T.); (A.K.); (D.B.)
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (S.D.); (V.S.); (V.T.); (A.K.); (D.B.)
| | - Dana Byrtusová
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (S.D.); (V.S.); (V.T.); (A.K.); (D.B.)
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech Republic; (M.S.); (I.M.)
| | - Martin Szotkowski
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech Republic; (M.S.); (I.M.)
| | - Ivana Márová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech Republic; (M.S.); (I.M.)
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (S.D.); (V.S.); (V.T.); (A.K.); (D.B.)
| |
Collapse
|
12
|
In-situ remediation of nitrogen and phosphorus of beverage industry by potential strains Bacillus sp. (BK1) and Aspergillus sp. (BK2). Sci Rep 2021; 11:12243. [PMID: 34112820 PMCID: PMC8192750 DOI: 10.1038/s41598-021-91539-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/19/2021] [Indexed: 12/03/2022] Open
Abstract
The bioremediation of beverage (treated and untreated) effluent was investigated in the current study by using the potential strains of Bacillus sp. (BK1) and Aspergillus sp. (BK2). Effluent was collected from the beverage industry (initial concentration of nitrogen were 3200 ± 0.5 mg/L and 4400 ± 0.6 mg/L whereas phosphorus were 4400 ± 2 mg/L and 2600 ± 1 mg/L in treated and untreated effluent correspondingly). Further, the BK1 and BK2 exhibited high removal competence after 1 week of incubation; BK1 removed phosphorus 99.95 ± 0.7% and BK2 95.69 ± 1% in treated effluent while nitrogen removed about 99.90 ± 0.4% by BK1 and 81.25 ± 0.8% by BK2 (initial concentration of phosphorus 4400 ± 2 mg/L and nitrogen 3200 ± 0.5 mg/L). Next, in the untreated effluent BK1 removed 99.81 ± 1% and BK2 99.85 ± 0.8% of phosphorus while removed nitrogen 99.93 ± 0.5% by BK1 and 99.95 ± 1.2% by BK2 correspondingly, (initial concentration of phosphorus 2600 ± 1 mg/L and nitrogen 4400 ± 0.6 mg/L). The physiochemical composition of sample such as pH, total carbohydrates, total proteins, total solids of treated and untreated effluent were also analysed before and after treatment of both the samples. BK1 and BK2 increased the pH by 8.94 ± 0.3 and 9.5 ± 0.4 correspondingly in treated effluent whereas 6.34 ± 0.5 and 7.5 ± 0.2 correspondingly in untreated effluent (initial pH of treated and untreated effluent 7.07 ± 0.8 and 4.85 ± 0.3 correspondingly). Total Carbohydrates removed about 17,440 ± 4.6 mg/L and 10,680 ± 3.2 mg/L by BK1 and BK2 correspondingly in treated effluent whereas 18,050 ± 3.5 mg/L and 18,340 ± 2.3 mg/L correspondingly in untreated effluent (initial concentration of treated and untreated effluent 25,780 ± 1.6 mg/L and 35,000 ± 1.5 mg/L correspondingly) while BK1 and BK2 removed total proteins by 30.336 ± 4.6 mg/L and 40.417 ± 2.3 mg/L correspondingly in treated effluent whereas 18.929 ± 1.2 mg/L and 17.526 ± 0.8 mg/L correspondingly in untreated effluent (initial concentration of treated and untreated effluent 49.225 ± 1.5 mg/L and 20.565 ± 1 mg/L correspondingly). Next, total solids removed by BK1 and BK2 2.5 ± 0.3 mg/L and 1.6 ± 0.6 mg/L correspondingly in treated effluent whereas 5.5 ± 0.8 mg/L and 4.6 ± 0.6 mg/L in untreated effluent (initial concentration of treated and untreated effluent 5.6 ± 1.5 mg/L and 9.48 ± 1.2 mg/L correspondingly). Both the strains BK1 and BK2 are highly efficient in the nitrogen and phosphorus removal therefore this strain may be applied for the potential remediation.
Collapse
|
13
|
Langseter AM, Dzurendova S, Shapaval V, Kohler A, Ekeberg D, Zimmermann B. Evaluation and optimisation of direct transesterification methods for the assessment of lipid accumulation in oleaginous filamentous fungi. Microb Cell Fact 2021; 20:59. [PMID: 33658027 PMCID: PMC7931520 DOI: 10.1186/s12934-021-01542-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Background Oleaginous filamentous fungi can accumulate large amount of cellular lipids and potentially serve as a major source of oleochemicals for food, feed, chemical, pharmaceutical, and transport industries. Transesterification of microbial oils is an essential step in microbial lipid production at both laboratory and industrial scale. Direct transesterification can considerably reduce costs, increase sample throughput and improve lipid yields (in particular fatty acid methyl esters, FAMEs). There is a need for the assessment of the direct transesterification methods on a biomass of filamentous fungi due to their unique properties, specifically resilient cell wall and wide range of lipid content and composition. In this study we have evaluated and optimised three common direct transesterification methods and assessed their suitability for processing of fungal biomass. Results The methods, based on hydrochloric acid (Lewis method), sulphuric acid (Wahlen method), and acetyl chloride (Lepage method), were evaluated on six different strains of Mucoromycota fungi by using different internal standards for gas chromatography measurements. Moreover, Fourier transform infrared (FTIR) spectroscopy was used for the detection of residual lipids in the biomass after the transesterification reaction/extraction, while transesterification efficiency was evaluated by nuclear magnetic resonance spectroscopy. The results show that the majority of lipids, in particular triglycerides, were extracted for all methods, though several methods had substandard transesterification yields. Lewis method, optimised with respect to solvent to co-solvent ratio and reaction time, as well as Lepage method, offer precise estimate of FAME-based lipids in fungal biomass. Conclusions The results show that Lepage and Lewis methods are suitable for lipid analysis of oleaginous filamentous fungi. The significant difference in lipid yields results, obtained by optimised and standard Lewis methods, indicates that some of the previously reported lipid yields for oleaginous filamentous fungi must be corrected upwards. The study demonstrates value of biomass monitoring by FTIR, importance of optimal solvent to co-solvent ratio, as well as careful selection and implementation of internal standards for gas chromatography.
Collapse
Affiliation(s)
- Anne Marie Langseter
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Simona Dzurendova
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Dag Ekeberg
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway.
| |
Collapse
|
14
|
Saia SM, Carrick HJ, Buda AR, Regan JM, Walter MT. Critical Review of Polyphosphate and Polyphosphate Accumulating Organisms for Agricultural Water Quality Management. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2722-2742. [PMID: 33559467 DOI: 10.1021/acs.est.0c03566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite ongoing management efforts, phosphorus (P) loading from agricultural landscapes continues to impair water quality. Wastewater treatment research has enhanced our knowledge of microbial mechanisms influencing P cycling, especially regarding microbes known as polyphosphate accumulating organisms (PAOs) that store P as polyphosphate (polyP) under oxic conditions and release P under anoxic conditions. However, there is limited application of PAO research to reduce agricultural P loading and improve water quality. Herein, we conducted a meta-analysis to identify articles in Web of Science on polyP and its use by PAOs across five disciplines (i.e., wastewater treatment, terrestrial, freshwater, marine, and agriculture). We also summarized research that provides preliminary support for PAO-mediated P cycling in natural habitats. Terrestrial, freshwater, marine, and agriculture disciplines had fewer polyP and PAO articles compared to wastewater treatment, with agriculture consistently having the least. Most meta-analysis articles did not overlap disciplines. We found preliminary support for PAOs in natural habitats and identified several knowledge gaps and research opportunities. There is an urgent need for interdisciplinary research linking PAOs, polyP, and oxygen availability with existing knowledge of P forms and cycling mechanisms in natural and agricultural environments to improve agricultural P management strategies and achieve water quality goals.
Collapse
Affiliation(s)
- Sheila M Saia
- Depatment of Biological and Agricultural Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hunter J Carrick
- Department of Biology and Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Anthony R Buda
- Pasture Systems and Watershed Management Research Unit, Agricultural Research Service, United States Department of Agriculture, University Park, Pennsylvania 16802, United States
| | - John M Regan
- Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - M Todd Walter
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
15
|
Dalecka B, Strods M, Juhna T, Rajarao GK. Removal of total phosphorus, ammonia nitrogen and organic carbon from non-sterile municipal wastewater with Trametes versicolor and Aspergillus luchuensis. Microbiol Res 2020; 241:126586. [DOI: 10.1016/j.micres.2020.126586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 01/17/2023]
|
16
|
Metal and Phosphate Ions Show Remarkable Influence on the Biomass Production and Lipid Accumulation in Oleaginous Mucor circinelloides. J Fungi (Basel) 2020; 6:jof6040260. [PMID: 33143254 PMCID: PMC7711463 DOI: 10.3390/jof6040260] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022] Open
Abstract
The biomass of Mucor circinelloides, a dimorphic oleaginous filamentous fungus, has a significant nutritional value and can be used for single cell oil production. Metal ions are micronutrients supporting fungal growth and metabolic activity of cellular processes. We investigated the effect of 140 different substrates, with varying amounts of metal and phosphate ions concentration, on the growth, cell chemistry, lipid accumulation, and lipid profile of M. circinelloides. A high-throughput set-up consisting of a Duetz microcultivation system coupled to Fourier transform infrared spectroscopy was utilized. Lipids were extracted by a modified Lewis method and analyzed using gas chromatography. It was observed that Mg and Zn ions were essential for the growth and metabolic activity of M. circinelloides. An increase in Fe ion concentration inhibited fungal growth, while higher concentrations of Cu, Co, and Zn ions enhanced the growth and lipid accumulation. Lack of Ca and Cu ions, as well as higher amounts of Zn and Mn ions, enhanced lipid accumulation in M. circinelloides. Generally, the fatty acid profile of M. circinelloides lipids was quite consistent, irrespective of media composition. Increasing the amount of Ca ions enhanced polyphosphates accumulation, while lack of it showed fall in polyphosphate.
Collapse
|
17
|
Dzurendova S, Zimmermann B, Kohler A, Tafintseva V, Slany O, Certik M, Shapaval V. Microcultivation and FTIR spectroscopy-based screening revealed a nutrient-induced co-production of high-value metabolites in oleaginous Mucoromycota fungi. PLoS One 2020; 15:e0234870. [PMID: 32569317 PMCID: PMC7307774 DOI: 10.1371/journal.pone.0234870] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022] Open
Abstract
Mucoromycota fungi possess a versatile metabolism and can utilize various substrates for production of industrially important products, such as lipids, chitin/chitosan, polyphosphates, pigments, alcohols and organic acids. However, as far as commercialisation is concerned, establishing industrial biotechnological processes based on Mucoromycota fungi is still challenging due to the high production costs compared to the final product value. Therefore, the development of co-production concept is highly desired since more than one valuable product could be produced at the time and the process has a potentially higher viability. To develop such biotechnological strategy, we applied a high throughput approach consisting of micro-titre cultivation and FTIR spectroscopy. This approach allows single-step biochemical fingerprinting of either fungal biomass or growth media without tedious extraction of metabolites. The influence of two types of nitrogen sources and different levels of inorganic phosphorus on the co-production of lipids, chitin/chitosan and polyphosphates for nine different oleaginous Mucoromycota fungi was evaluated. FTIR analysis of biochemical composition of Mucoromycota fungi and biomass yield showed that variation in inorganic phosphorus had higher effect when inorganic nitrogen source-ammonium sulphate-was used. It was observed that: (1) Umbelopsis vinacea reached almost double biomass yield compared to other strains when yeast extract was used as nitrogen source while phosphorus limitation had little effect on the biomass yield; (2) Mucor circinelloides, Rhizopus stolonifer, Amylomyces rouxii, Absidia glauca and Lichtheimia corymbifera overproduced chitin/chitosan under the low pH caused by the limitation of inorganic phosphorus; (3) Mucor circinelloides, Amylomyces rouxii, Rhizopus stolonifer and Absidia glauca were able to store polyphosphates in addition to lipids when high concentration of inorganic phosphorus was used; (4) the biomass and lipid yield of high-value lipid producers Mortierella alpina and Mortierella hyalina were significantly increased when high concentrations of inorganic phosphorus were combined with ammonium sulphate, while the same amount of inorganic phosphorus combined with yeast extract showed negative impact on the growth and lipid accumulation. FTIR spectroscopy revealed the co-production potential of several oleaginous Mucoromycota fungi forming lipids, chitin/chitosan and polyphosphates in a single cultivation process.
Collapse
Affiliation(s)
- Simona Dzurendova
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
- * E-mail: ,
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Valeria Tafintseva
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Ondrej Slany
- Faculty of Chemical and Food Technology, Slovak Technical University, Bratislava, Slovakia
| | - Milan Certik
- Faculty of Chemical and Food Technology, Slovak Technical University, Bratislava, Slovakia
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
18
|
Narendran R, Kathiresan K, Sathishkumar R, Kayalvizhi K, Sundaramanickam A. Bioremoval of toxic substances in synthetic wastewater using Trichoderma pubescens (NPK2), isolated from mangrove soil. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Fungi-based treatment of real brewery waste streams and its effects on water quality. Bioprocess Biosyst Eng 2019; 42:1317-1324. [PMID: 31025175 PMCID: PMC6647373 DOI: 10.1007/s00449-019-02130-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/12/2019] [Indexed: 12/21/2022]
Abstract
Nutrient-rich liquid waste streams generated during the beer brewing were treated by submerged fungal growth. Among five filamentous fungal strains tested, Pleurotus ostreatus and Trichoderma harzianum were selected for treatment of run-off from spent grain and hot trub, respectively. In both waste streams, nitrogen was well removed by fungal treatment, with a maximum reduction of 91.5 ± 0.5% of total nitrogen in run-off from spent grain treated with P. ostreatus and 77.0 ± 3.1% in hot trub treated with T. harzianum. Removal of phosphorus was considerably lower, with maximum removal of total phosphorus of 30.8 ± 11.1% for the P. ostreatus treatment and 16.6 ± 7.8% for the T. harzianum treatment. Considering the high concentration of phosphorus in the waste sources (320–600 mg L−1), additional techniques for its removal are needed. In the P. ostreatus treatment, a total amount of 13.2 ± 2.2 g L−1 dwt of biomass with a protein concentration of 11.6 ± 2.1% was produced.
Collapse
|
20
|
Rodrigues Reis CE, Bento HBS, Carvalho AKF, Rajendran A, Hu B, De Castro HF. Critical applications of Mucor circinelloides within a biorefinery context. Crit Rev Biotechnol 2019; 39:555-570. [PMID: 30931637 DOI: 10.1080/07388551.2019.1592104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The establishment of an efficient and feasible biorefinery model depends on, among other factors, particularly the selection of the most appropriate microorganism. Mucor circinelloides is a dimorphic fungus species able to produce a wide variety of hydrolytic enzymes, lipids prone to biodiesel production, carotenoids, ethanol, and biomass with significant nutritional value. M. circinelloides also has been selected as a model species for genetic modification by being the first filamentous oleaginous species to have its genome fully characterized, as well as being a species characterized as a potential bioremediation agent. Considering the potential of replacing several nonrenewable feedstocks is widely dependent on fossil fuels, the exploitation of microbial processes and products is a desirable solution for promoting a green and sustainable future. Here, we introduce and thoroughly describe the recent and critical applications of this remarkable fungus within the context of developing a fungal-based biorefinery.
Collapse
Affiliation(s)
- Cristiano E Rodrigues Reis
- a Department of Chemical Engineering, Engineering School of Lorena , University of São Paulo , Lorena , São Paulo , Brazil
| | - Heitor B S Bento
- a Department of Chemical Engineering, Engineering School of Lorena , University of São Paulo , Lorena , São Paulo , Brazil
| | - Ana K F Carvalho
- a Department of Chemical Engineering, Engineering School of Lorena , University of São Paulo , Lorena , São Paulo , Brazil
| | - Aravindan Rajendran
- b Department of Bioproducts and Biosystems Engineering , University of Minnesota , Saint Paul , MN , USA
| | - Bo Hu
- b Department of Bioproducts and Biosystems Engineering , University of Minnesota , Saint Paul , MN , USA
| | - Heizir F De Castro
- a Department of Chemical Engineering, Engineering School of Lorena , University of São Paulo , Lorena , São Paulo , Brazil
| |
Collapse
|
21
|
Xu F, Khalaf A, Sheets J, Ge X, Keener H, Li Y. Phosphorus Removal and Recovery From Anaerobic Digestion Residues. ADVANCES IN BIOENERGY 2018. [DOI: 10.1016/bs.aibe.2018.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Hultberg M, Bodin H. Fungi-based treatment of brewery wastewater-biomass production and nutrient reduction. Appl Microbiol Biotechnol 2017; 101:4791-4798. [PMID: 28213731 PMCID: PMC5442259 DOI: 10.1007/s00253-017-8185-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/29/2017] [Accepted: 02/07/2017] [Indexed: 11/23/2022]
Abstract
The beer-brewing process produces high amounts of nutrient-rich wastewater, and the increasing number of microbreweries worldwide has created a need for innovative solutions to deal with this waste. In the present study, fungal biomass production and the removal of organic carbon, phosphorus and nitrogen from synthetic brewery wastewater were studied. Different filamentous fungi with a record of safe use were screened for growth, and Trametes versicolor, Pleurotus ostreatus and Trichoderma harzianum were selected for further work. The highest biomass production, 1.78 ± 0.31 g L−1 of dry weight, was observed when P. ostreatus was used for the treatment, while T. harzianum demonstrated the best capability for removing nutrients. The maximum reduction of chemical oxygen demand, 89% of the initial value, was observed with this species. In the removal of total nitrogen and phosphorus, no significant difference was observed between the species, while removal of ammonium varied between the strains. The maximum reduction of ammonium, 66.1% of the initial value, was also found in the T. harzianum treatment. It can be concluded that all treatments provided significant reductions in all water-quality parameters after 3 days of growth and that the utilisation of filamentous fungi to treat brewery wastewater, linked to a deliberate strategy to use the biomass produced, has future potential in a bio-based society.
Collapse
Affiliation(s)
- M Hultberg
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, P.O. Box 103, SE 230 53, Alnarp, Sweden.
| | - H Bodin
- Division of Natural Sciences, Kristianstad University, Kristianstad, Sweden
| |
Collapse
|
23
|
Tarayre C, Nguyen HT, Brognaux A, Delepierre A, De Clercq L, Charlier R, Michels E, Meers E, Delvigne F. Characterisation of Phosphate Accumulating Organisms and Techniques for Polyphosphate Detection: A Review. SENSORS (BASEL, SWITZERLAND) 2016; 16:E797. [PMID: 27258275 PMCID: PMC4934223 DOI: 10.3390/s16060797] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/19/2016] [Accepted: 05/26/2016] [Indexed: 11/16/2022]
Abstract
Phosphate minerals have long been used for the production of phosphorus-based chemicals used in many economic sectors. However, these resources are not renewable and the natural phosphate stocks are decreasing. In this context, the research of new phosphate sources has become necessary. Many types of wastes contain non-negligible phosphate concentrations, such as wastewater. In wastewater treatment plants, phosphorus is eliminated by physicochemical and/or biological techniques. In this latter case, a specific microbiota, phosphate accumulating organisms (PAOs), accumulates phosphate as polyphosphate. This molecule can be considered as an alternative phosphate source, and is directly extracted from wastewater generated by human activities. This review focuses on the techniques which can be applied to enrich and try to isolate these PAOs, and to detect the presence of polyphosphate in microbial cells.
Collapse
Affiliation(s)
- Cédric Tarayre
- Microbial Processes and Interactions, Bât. G1 Bio-Industries, Passage des Déportés 2, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Huu-Thanh Nguyen
- Natural Products and Industrial Biochemistry Research Group (NPIB), Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho, Tan Phong Ward, District 7, 700000 Ho Chi Minh City, Vietnam.
- Microbial Processes and Interactions, Bât. G1 Bio-Industries, Passage des Déportés 2, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Alison Brognaux
- Microbial Processes and Interactions, Bât. G1 Bio-Industries, Passage des Déportés 2, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Anissa Delepierre
- Microbial Processes and Interactions, Bât. G1 Bio-Industries, Passage des Déportés 2, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Lies De Clercq
- Department of Applied Analytical and Physical Chemistry, Laboratory of Analytical Chemistry and Applied Ecochemistry, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Raphaëlle Charlier
- Microbial Processes and Interactions, Bât. G1 Bio-Industries, Passage des Déportés 2, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Evi Michels
- Department of Applied Analytical and Physical Chemistry, Laboratory of Analytical Chemistry and Applied Ecochemistry, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Erik Meers
- Department of Applied Analytical and Physical Chemistry, Laboratory of Analytical Chemistry and Applied Ecochemistry, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Frank Delvigne
- Natural Products and Industrial Biochemistry Research Group (NPIB), Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho, Tan Phong Ward, District 7, 700000 Ho Chi Minh City, Vietnam.
- Microbial Processes and Interactions, Bât. G1 Bio-Industries, Passage des Déportés 2, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| |
Collapse
|
24
|
Tarayre C, De Clercq L, Charlier R, Michels E, Meers E, Camargo-Valero M, Delvigne F. New perspectives for the design of sustainable bioprocesses for phosphorus recovery from waste. BIORESOURCE TECHNOLOGY 2016; 206:264-274. [PMID: 26873287 DOI: 10.1016/j.biortech.2016.01.091] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 05/22/2023]
Abstract
Phosphate rock has long been used for the production of phosphorus based chemicals. However, considering the depletion of the reservoirs and the decrease of the quality of phosphate rocks, a potential market is now emerging for the recovery of phosphate from waste and its reuse for different applications. Notably, phosphate recovery from wastewater could be included in a circular economy approach. This review focuses on the use of microbial systems for phosphorus accumulation and recovery, by considering the actual range of analytical techniques available for the monitoring of phosphorus accumulating organisms, as well as the actual biochemical and metabolic engineering toolbox available for the optimization of bioprocesses. In this context, knowledge gathered from process, system and synthetic biology could potentially lead to innovative process design.
Collapse
Affiliation(s)
- Cédric Tarayre
- Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Lies De Clercq
- Department of Applied Analytical and Physical Chemistry, Laboratory of Analytical Chemistry and Applied Ecochemistry, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Raphaëlle Charlier
- Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Evi Michels
- Department of Applied Analytical and Physical Chemistry, Laboratory of Analytical Chemistry and Applied Ecochemistry, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Erik Meers
- Department of Applied Analytical and Physical Chemistry, Laboratory of Analytical Chemistry and Applied Ecochemistry, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Miller Camargo-Valero
- Faculty of Engineering, University of Leeds, Leeds LS2 9JT, Leeds, United Kingdom; Departamento de Ingeniería Química, Universidad Nacional de Colombia, Campus La Nubia, Manizales, Colombia
| | - Frank Delvigne
- Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium.
| |
Collapse
|