1
|
Zheng J, Lan X, Huang L, Zhang Y, Wang Z. Kinetic resolution of N-acetyl-DL-alanine methyl ester using immobilized Escherichia coli cells bearing recombinant esterase from Bacillus cereus. Chirality 2018; 30:907-912. [PMID: 29676476 DOI: 10.1002/chir.22863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/04/2018] [Accepted: 03/14/2018] [Indexed: 12/18/2022]
Abstract
D-alanine is widely used in medicine, food, additives, cosmetics, and other consumer items. Esterase derived from Bacillus cereus WZZ001 exhibits high hydrolytic activity and stereoselectivity. In this study, we expressed the esterase gene in Escherichia coli BL21 (DE3). We analyzed the biocatalytic resolution of N-acetyl-DL-alanine methyl ester by immobilized whole E. coli BL21 (DE3) cells, which were prepared through embedding and cross-linking. We analyzed biocatalytic resolution under the optimal conditions of pH of 7.0, temperature of 40°C and substrate concentration of at 700 mM with an enantiomeric excess of 99.99% and e.e.p of 99.50%. The immobilized recombinant B. cereus esterase E. coli BL21 (DE3) cells exhibited excellent reusability and retained 86.04% of their initial activity after 15 cycles of repeated reactions. The immobilized cells are efficient and stable biocatalysts for the preparation of N-acetyl-D-alanine methyl esters.
Collapse
Affiliation(s)
- Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xing Lan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Lijuan Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yinjun Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
2
|
Zdarta J, Wysokowski M, Norman M, Kołodziejczak-Radzimska A, Moszyński D, Maciejewski H, Ehrlich H, Jesionowski T. Candida antarctica Lipase B Immobilized onto Chitin Conjugated with POSS ® Compounds: Useful Tool for Rapeseed Oil Conversion. Int J Mol Sci 2016; 17:E1581. [PMID: 27657054 PMCID: PMC5037846 DOI: 10.3390/ijms17091581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 01/04/2023] Open
Abstract
A new method is proposed for the production of a novel chitin-polyhedral oligomeric silsesquioxanes (POSS) enzyme support. Analysis by such techniques as X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the effective functionalization of the chitin surface. The resulting hybrid carriers were used in the process of immobilization of the lipase type b from Candida antarctica (CALB). Fourier transform infrared spectroscopy (FTIR) confirmed the effective immobilization of the enzyme. The tests of the catalytic activity showed that the resulting support-biocatalyst systems remain hydrolytically active (retention of the hydrolytic activity up to 87% for the chitin + Methacryl POSS® cage mixture (MPOSS) + CALB after 24 h of the immobilization), as well as represents good thermal and operational stability, and retain over 80% of its activity in a wide range of temperatures (30-60 °C) and pH (6-9). Chitin-POSS-lipase systems were used in the transesterification processes of rapeseed oil at various reaction conditions. Produced systems allowed the total conversion of the oil to fatty acid methyl esters (FAME) and glycerol after 24 h of the process at pH 10 and a temperature 40 °C, while the Methacryl POSS® cage mixture (MPOSS) was used as a chitin-modifying agent.
Collapse
Affiliation(s)
- Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60965, Poland.
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60965, Poland.
| | - Małgorzata Norman
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60965, Poland.
| | - Agnieszka Kołodziejczak-Radzimska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60965, Poland.
| | - Dariusz Moszyński
- Institute of Chemical and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Pulaskiego 10, Szczecin 70322, Poland.
| | - Hieronim Maciejewski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Umultowska 89b, Poznan 61614, Poland.
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubiez 46, Poznan 61612, Poland.
| | - Hermann Ehrlich
- Institute of Experimental Physics, Technische Universität Bergakademie Freiberg, Leipziger Str. 23, Freiberg 09599, Germany.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60965, Poland.
| |
Collapse
|