1
|
Zhang P, Xiong Y, Bi L, Zhong H, Ren J, Zhou B. Non-antibiotic feed additives production by Acremonium terricola solid-fermented Camellia oleifera meal. BIORESOUR BIOPROCESS 2024; 11:90. [PMID: 39340720 PMCID: PMC11438759 DOI: 10.1186/s40643-024-00808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The Camellia oleifera meal (COM), a primary byproduct of oil-tea processing, often being discarded or used as a low-grade fertilizer due to its low value. The underutilization has become a significant bottleneck hindering the high-quality development of the oil-tea industry. In this study, the production of antibiotic-free feed additives through the solid-state fermentation of COM by Acremonium terricola was investigated. Our findings revealed that a saponin concentration of 5 mg/mL significantly enhanced the production of cordycepic acid (70.4 mg/g), ergosterol (3.32 mg/g), and chitin (110 mg/g) by A. terricola. This concentration also promoted chitin production and the activities of peroxidase (POD) and Na+/K+-ATPase, thereby maintaining cellular homeostasis and energy balance in A. terricola. Solid-state fermented rice bran (RB), wheat bran (WB), and desaponificated COM (containing 2.6 mg/100 g of tea saponin) were all found to be beneficial for increasing the production of cordycepic acid and ergosterol. The blend of COM, RB, and WB in the ratio of 15:65:20 was particularly advantageous for the production and accumulation of cordycepic acid and ergosterol, yielding 1.54 and 1.43 times, 1.27 and 1.37 times, and 1.98 and 5.52 times more than those produced by WB, RB, and COM alone, respectively.Meantime, the difference in contents of sugar and protein in A. terricola cultures (ATCs) using combination were not significant compared to RB and WB. These results indicated that COM can partially replace foodstuffs or food by-products to prepare antibiotic-free feed additives by A. terricola.
Collapse
Affiliation(s)
- Peng Zhang
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, Hunan, 410004, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Ying Xiong
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, Hunan, 410004, China
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Luanluan Bi
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, Hunan, 410004, China
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Haiyan Zhong
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, Hunan, 410004, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, Hunan, 410004, China
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Bo Zhou
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, Hunan, 410004, China.
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| |
Collapse
|
2
|
Hu Y, Wu Y, Song J, Ma M, Xiao Y, Zeng B. Advancing Cordyceps militaris Industry: Gene Manipulation and Sustainable Biotechnological Strategies. Bioengineering (Basel) 2024; 11:783. [PMID: 39199741 PMCID: PMC11351413 DOI: 10.3390/bioengineering11080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Cordyceps militaris is considered to be of great medicinal potential due to its remarkable pharmacological effects, safety, and edible characteristics. With the completion of the genome sequence and the advancement of efficient gene-editing technologies, coupled with the identification of gene functions in Cordyceps militaris, this fungus is poised to emerge as an outstanding strain for medicinal engineering applications. This review focuses on the development and application of genomic editing techniques, including Agrobacterium tumefaciens-mediated transformation (ATMT), PEG-mediated protoplast transformation (PMT), and CRISPR/Cas9. Through the application of these techniques, researchers can engineer the biosynthetic pathways of valuable secondary metabolites to boost yields; such metabolites include cordycepin, polysaccharides, and ergothioneine. Furthermore, by identifying and modifying genes that influence the growth, disease resistance, and tolerance to environmental stress in Cordyceps militaris, it is possible to stimulate growth, enhance desirable traits, and increase resilience to unfavorable conditions. Finally, the green sustainable industrial development of C. militaris using agricultural waste to produce high-value-added products and the future research directions of C. militaris were discussed. This review will provide future directions for the large-scale production of bioactive ingredients, molecular breeding, and sustainable development of C. militaris.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.H.); (Y.W.); (J.S.); (M.M.); (Y.X.)
| |
Collapse
|
3
|
Krishna KV, Ulhas RS, Malaviya A. Bioactive compounds from Cordyceps and their therapeutic potential. Crit Rev Biotechnol 2024; 44:753-773. [PMID: 37518188 DOI: 10.1080/07388551.2023.2231139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/23/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023]
Abstract
The Clavicipitaceae family's largest and most diverse genus is Cordyceps. They are most abundant and diverse in humid temperate and tropical forests and have a wide distribution in: Europe, North America, and East and Southeast Asian countries, particularly: Bhutan, China, Japan, Nepal, Korea, Thailand, Vietnam, Tibet, and the Himalayan region of India, and Sikkim. It is a well-known parasitic fungus that feeds on insects and other arthropods belonging to 10 different orders. Over 200 bioactive metabolites, that include: nucleotides and nucleosides, polysaccharides, proteins, polypeptides, amino acids, sterols, and fatty acids, among others have been extracted from Cordyceps spp. demonstrating the phytochemical richness of this genus. These components have been associated with a variety of pharmacological effects, including: anti-microbial, anti-apoptotic, anti-cancer, anti-inflammatory, antioxidant, and immunomodulatory activities. In this paper, the bioactivity of various classes of metabolites produced by Cordyceps spp., and their therapeutic properties have been reviewed in an attempt to update the existing literature. Furthermore, one of its nucleoside and a key bioactive compound, cordycepin has been critically elaborated with regard to its biosynthesis pathway and the recently proposed protector-protégé mechanism as well as various biological and pharmacological effects, such as: suppression of purine and nucleic acid biosynthesis, induction of apoptosis, and cell cycle regulation with their mechanism of action. This review provides current knowledge on the bioactive potential of Cordyceps spp.
Collapse
Affiliation(s)
- Kondapalli Vamsi Krishna
- Applied and Industrial Biotechnology Laboratory, Christ (Deemed-to-be University), Bangalore, Karnataka, India
| | - Rutwick Surya Ulhas
- Institute of Biochemistry and Biophysics, Faculty of Life Sciences, University of Jena (Friedrich-Schiller-Universität Jena), Jena, Germany
| | - Alok Malaviya
- Applied and Industrial Biotechnology Laboratory, Christ (Deemed-to-be University), Bangalore, Karnataka, India
- Division of Life Sciences, Gyeongsang National University, Gyeongsangnam-do, South Korea
- QuaLife Biotech Pvt Ltd, Bangalore, India
| |
Collapse
|
4
|
Peng T, Guo J, Tong X. Advances in biosynthesis and metabolic engineering strategies of cordycepin. Front Microbiol 2024; 15:1386855. [PMID: 38903790 PMCID: PMC11188397 DOI: 10.3389/fmicb.2024.1386855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/26/2024] [Indexed: 06/22/2024] Open
Abstract
Cordyceps militaris, also called as bei-chong-cao, is an insect-pathogenic fungus from the Ascomycota phylum and the Clavicipitaceae family. It is a valuable filamentous fungus with medicinal and edible properties that has been utilized in traditional Chinese medicine (TCM) and as a nutritious food. Cordycepin is the bioactive compound firstly isolated from C. militaris and has a variety of nutraceutical and health-promoting properties, making it widely employed in nutraceutical and pharmaceutical fields. Due to the low composition and paucity of wild resources, its availability from natural sources is limited. With the elucidation of the cordycepin biosynthetic pathway and the advent of synthetic biology, a green cordycepin biosynthesis in Saccharomyces cerevisiae and Metarhizium robertsii has been developed, indicating a potential sustainable production method of cordycepin. Given that, this review primarily focused on the metabolic engineering and heterologous biosynthesis strategies of cordycepin.
Collapse
Affiliation(s)
| | - Jinlin Guo
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinxin Tong
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Wang X, Li Y, Li X, Sun L, Feng Y, Sa F, Ge Y, Yang S, Liu Y, Li W, Cheng X. Transcriptome and metabolome profiling unveils the mechanisms of naphthalene acetic acid in promoting cordycepin synthesis in Cordyceps militaris. Front Nutr 2023; 10:1104446. [PMID: 36875834 PMCID: PMC9977999 DOI: 10.3389/fnut.2023.1104446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Cordycepin, an important active substance in Cordyceps militaris, possesses antiviral and other beneficial activities. In addition, it has been reported to effectively promote the comprehensive treatment of COVID-19 and thus has become a research hotspot. The addition of naphthalene acetic acid (NAA) is known to significantly improve the yield of cordycepin; however, its related molecular mechanism remains unclear. We conducted a preliminary study on C. militaris with different concentrations of NAA. We found that treatment with different concentrations of NAA inhibited the growth of C. militaris, and an increase in its concentration significantly improved the cordycepin content. In addition, we conducted a transcriptome and metabolomics association analysis on C. militaris treated with NAA to understand the relevant metabolic pathway of cordycepin synthesis under NAA treatment and elucidate the relevant regulatory network of cordycepin synthesis. Weighted gene co-expression network analysis (WGCNA), transcriptome, and metabolome association analysis revealed that genes and metabolites encoding cordycepin synthesis in the purine metabolic pathway varied significantly with the concentration of NAA. Finally, we proposed a metabolic pathway by analyzing the relationship between gene-gene and gene-metabolite regulatory networks, including the interaction of cordycepin synthesis key genes; key metabolites; purine metabolism; TCA cycle; pentose phosphate pathway; alanine, aspartate, and glutamate metabolism; and histidine metabolism. In addition, we found the ABC transporter pathway to be significantly enriched. The ABC transporters are known to transport numerous amino acids, such as L-glutamate, and participate in the amino acid metabolism that affects the synthesis of cordycepin. Altogether, multiple channels work together to double the cordycepin yield, thereby providing an important reference for the molecular network relationship between the transcription and metabolism of cordycepin synthesis.
Collapse
Affiliation(s)
- Xin Wang
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Yin Li
- Yantai Hospital of Traditional Chinese Medicine, Yantai, China
| | - Xiue Li
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Lei Sun
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Yetong Feng
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Fangping Sa
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Yupeng Ge
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Shude Yang
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Yu Liu
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Weihuan Li
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Xianhao Cheng
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
6
|
LIU J, LIU B, XUE Q, ZHANG H, XUE Z, QIAN K, ZHANG J, JIN Y, HAN J, ZHU C. Analysis of appearance and active substances of Cordyceps militaris stromata on Antheraea pernyi pupae after optimization. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.127022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Juan LIU
- Sericulture Research Institute of Jilin Province, China
| | - Baoyu LIU
- Sericulture Research Institute of Jilin Province, China
| | - Qiang XUE
- Sericulture Research Institute of Jilin Province, China
| | - Haidong ZHANG
- Sericulture Research Institute of Jilin Province, China
| | - Zhenhai XUE
- Sericulture Research Institute of Jilin Province, China
| | - Kun QIAN
- Sericulture Research Institute of Jilin Province, China
| | - Jihui ZHANG
- Sericulture Research Institute of Jilin Province, China
| | - Ying JIN
- Sericulture Research Institute of Jilin Province, China
| | - Jianhua HAN
- Sericulture Research Institute of Jilin Province, China
| | - Changjie ZHU
- Sericulture Research Institute of Jilin Province, China
| |
Collapse
|
7
|
Duan X, Yang H, Wang C, Liu H, Lu X, Tian Y. Microbial synthesis of cordycepin, current systems and future perspectives. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Zhang H, Chen P, Xu L, Xu D, Hu W, Cheng Y, Yang S. Construction of Cordycepin High-Production Strain and Optimization of Culture Conditions. Curr Microbiol 2022; 80:12. [PMID: 36459233 DOI: 10.1007/s00284-022-03110-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/06/2022] [Indexed: 12/04/2022]
Abstract
This study aimed to increase cordycepin production by over-expressing bio-synthetic enzyme genes, including the adenylosuccinate synthase, adenylosuccinate lyase, and 5'-nucleotidase genes. Research data showed that the extracellular and intracellular cordycepin concent of 24 recombinant strains were higher than those of C. militaris WT, indicating that over-expression of key enzyme genes increased cordycepin production. Among them, the CM-adss-5 strain had highest cordycepin production, and the extracellular and intracellular cordycepin concent were 1119.75 ± 1.61 and 65.56 ± 0.97 mg/L, which were 1.26 and 2.61 times that of C. militaris WT. This study also optimized the culture conditions of CM-adss-5 strain through single factor experiments to obtain the best culture conditions. The best culture condition was 25 °C constant temperature, 180-rpm shaking culture, fermentation period 12 days, inoculate amount 5%, initial pH 6, seed age 108 h, and liquid volume 110/250 mL. Then, the extracellular and intracellular cordycepin content of CM-adss-5 strain reached 2581.96 ± 21.07 and 164.08 ± 1.44 mg/L, which were higher by 130.6% and 150.3%, respectively. Therefore, our research provides a way to efficiently produce cordycepin for the development of cordycepin and its downstream products.
Collapse
Affiliation(s)
- Hui Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China.
| | - Ping Chen
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Lin Xu
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - De Xu
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Wendi Hu
- Zhejiang Skyherb Biotechnology Inc., Anji, 313300, People's Republic of China
| | - Yong Cheng
- Zhejiang Skyherb Biotechnology Inc., Anji, 313300, People's Republic of China
| | - Shengli Yang
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
9
|
Li W, Qian Z, Zou Y, Tan G, Li W, Lei Q, Li R, Lan D. A simple, rapid, sensitive and eco-friendly LC-MS/MS method for simultaneous determination of free cordycepin and isocordycepin in 10 different kinds of Cordyceps. ACTA CHROMATOGR 2022. [DOI: 10.1556/1326.2022.01094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AbstractA simple, rapid, sensitive and eco-friendly liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed for simultaneous determination of free cordycepin (3′-deoxyadenosine) and isocordycepin (2′-deoxyadenosine) in 10 kinds of Cordyceps samples. The samples were prepared by ultrasonic extraction at 75 °C for 30 min with boiling water as the extraction solvent. The LC separation was performed on an Agilent poroshell 120 SB-Aq C18 column (3.0 × 50 mm, 2.7 μm) in isocratic mode with an eco-friendly mobile phase (2% ethanol containing 0.2% acetic acid) at a flow rate of 0.6 mL min−1, and detected by MS/MS in positive mode with multiple reaction monitoring (MRM). The developed method showed good linearity (r > 0.9990), sensitivity (LODs = 0.04 pg, LOQ = 0.1 pg), precision (RSD ≤ 3.8%) and stability (RSD ≤ 3.6%). The recoveries of developed method were 94.4–109.5% (RSD ≤ 5.5%). Compared with reported methods, the current method was rapid (less than 35% analytical time), sensitive (more than 5 folds), and eco-friendly (less than 10 μL harmful organic solvent). 10 different kinds of Cordyceps samples (40 batches) were tested by the developed method. Codycepin was only found in Cordyceps millitaris and C. millitaris fruiting body, and isocordycepin was detected in Cordyceps sinensis and other 6 Cordyceps samples. The developed method would be an improved method for the quality evaluation of Cordyceps samples.
Collapse
Affiliation(s)
- Wenqing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Zhengming Qian
- College of Medical Imaging Laboratory and Rehabilitation, Xiangnan University, Chenzhou, 423000, PR China
- Dongguan HEC Cordyceps R&D Co., LTD, Dongguan, Guangdong, 523850, PR China
| | - Yuansheng Zou
- Dongguan HEC Cordyceps R&D Co., LTD, Dongguan, Guangdong, 523850, PR China
| | - Guoying Tan
- Dongguan HEC Cordyceps R&D Co., LTD, Dongguan, Guangdong, 523850, PR China
| | - Wenjia Li
- Dongguan HEC Cordyceps R&D Co., LTD, Dongguan, Guangdong, 523850, PR China
| | - Qinggui Lei
- Dongguan HEC Cordyceps R&D Co., LTD, Dongguan, Guangdong, 523850, PR China
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, PR China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| |
Collapse
|
10
|
Cordycepin production by a novel endophytic fungus Irpex lacteus CHG05 isolated from Cordyceps hawkesii Gray. Folia Microbiol (Praha) 2022; 67:851-860. [PMID: 35678982 DOI: 10.1007/s12223-022-00981-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/18/2022] [Indexed: 11/04/2022]
Abstract
Cordycepin is an essential nucleoside antibiotic with a broad spectrum of physiological functions, which is currently produced by the fermentation of Cordyceps militaris. Even though numerous efforts were made to enhance cordycepin production, the cordycepin yield is still limited. High-cordycepin-yielding strains are still a prerequisite for industrial cordycepin production in large amounts. Screening high-cordycepin-yielding strains from other sources may break new grounds for cordycepin. In this study, Cordyceps hawkesii Gray, with high homology to C. militaris, was selected as the source to screen the cordycepin manufacturing endophytic fungi. Four isolates capable of cordycepin production were successfully obtained among all isolated endophytic fungi. One of the four with better cordycepin yield was identified as Irpex lacteus CHG05, which belongs to the Phlebia species. The response surface methodology was applied to optimize the culture conditions for cordycepin fermentation. 162.05 mg/L of cordycepin with a 53.1% improvement was achieved compared to the original conditions. This study indicates that the endophytic fungi from C. hawkesii Gray could produce cordycepin and served as the first report for cordycepin by the white-rot fungus of I. lacteus. Even though the yield is low compared to C. militaris, this strain provided another choice for enhanced cordycepin in the future.
Collapse
|
11
|
Shi C, Song W, Gao J, Yan S, Guo C, Zhang T. Enhanced production of cordycepic acid from Cordyceps cicadae isolated from a wild environment. Braz J Microbiol 2022; 53:673-688. [PMID: 35122655 PMCID: PMC9151976 DOI: 10.1007/s42770-022-00687-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/29/2022] [Indexed: 02/07/2023] Open
Abstract
Cordyceps acid is an active component of Cordyceps cicadae and has a variety of medicinal uses, including anti-tumor effects, the prevention of cerebral hemorrhaging and myocardial infarction, and the inhibition of a wide range of bacteria. The objectives of this study were to identify C. cicadae fungi and optimize the culture conditions to obtain a high yield of cordycepic acid. First, a wild C. cicadae was identified by morphological observation and rDNA sequence analysis. Secondly, the optimal fermentation conditions were determined using a single-factor method, a Plackett-Burman design, and a Box-Behnken response surface. Finally, using the yield of fruit bodies and the content of cordyceps acid as indices, combined with a single-factor experiment and a response surface design, the best combination of conditions for cultivation was determined. The results showed that the best combination was as follows: sucrose 2%, tryptone 2%, KH2PO4 0.4%, MgSO4·7H2O 0.4%, an initial pH of the fermentation liquid of 7.0, 5% inoculum, fermentation for 4.5 d, a ratio of medium to liquid of 1:1.7, illumination intensity 150 Lux, illumination time 15 h per day, and 70% humidity. The content of cordycepic acid in the fruiting bodies developed in cultivation was 2.07-fold higher than that in the wild C. cicadae. This study provides a theoretical basis for the large-scale cultivation of C. cicadae with a high concentration of cordycepic acid.
Collapse
Affiliation(s)
- Cuie Shi
- School of Biologic Engineering, Huainan Normal University, Huainan, 232038, Anhui, China
| | - Wenlong Song
- School of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Jian Gao
- School of Biologic Engineering, Huainan Normal University, Huainan, 232038, Anhui, China
| | - Shoubao Yan
- School of Biologic Engineering, Huainan Normal University, Huainan, 232038, Anhui, China.
| | - Chen Guo
- School of Biologic Engineering, Huainan Normal University, Huainan, 232038, Anhui, China
| | - Tengfei Zhang
- School of Biologic Engineering, Huainan Normal University, Huainan, 232038, Anhui, China
| |
Collapse
|
12
|
Yoo CH, Sadat MA, Kim W, Park TS, Park DK, Choi J. Comprehensive Transcriptomic Analysis of Cordyceps militaris Cultivated on Germinated Soybeans. MYCOBIOLOGY 2022; 50:1-11. [PMID: 35291592 PMCID: PMC8890544 DOI: 10.1080/12298093.2022.2035906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The ascomycete fungus Cordyceps militaris infects lepidopteran larvae and pupae and forms characteristic fruiting bodies. Owing to its immune-enhancing effects, the fungus has been used as a medicine. For industrial application, this fungus can be grown on geminated soybeans as an alternative protein source. In our study, we performed a comprehensive transcriptomic analysis to identify core gene sets during C. militaris cultivation on germinated soybeans. RNA-Seq technology was applied to the fungal cultures at seven-time points (2, 4, and 7-day and 2, 3, 5, 7-week old cultures) to investigate the global transcriptomic change. We conducted a time-series analysis using a two-step regression strategy and chose 1460 significant genes and assigned them into five clusters. Characterization of each cluster based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases revealed that transcription profiles changed after two weeks of incubation. Gene mapping of cordycepin biosynthesis and isoflavone modification pathways also confirmed that gene expression in the early stage of GSC cultivation is important for these metabolic pathways. Our transcriptomic analysis and selected genes provided a comprehensive molecular basis for the cultivation of C. militaris on germinated soybeans.
Collapse
Affiliation(s)
- Chang-Hyuk Yoo
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, South Korea
- Small Machines Company, Ltd., Seoul, South Korea
| | - Md. Abu Sadat
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, South Korea
| | - Wonjae Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, South Korea
| | - Tae-Sik Park
- Department of Life Science, Gacheon University, Seongnam, South Korea
| | - Dong Ki Park
- Cell Activation Research Institute, Seoul, South Korea
| | - Jaehyuk Choi
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, South Korea
| |
Collapse
|
13
|
Wang L, Yan H, Zeng B, Hu Z. Research Progress on Cordycepin Synthesis and Methods for Enhancement of Cordycepin Production in Cordyceps militaris. Bioengineering (Basel) 2022; 9:bioengineering9020069. [PMID: 35200422 PMCID: PMC8869658 DOI: 10.3390/bioengineering9020069] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
C. militaris is an insect-born fungus that belongs to Ascomycota and Cordyceps. It has a variety of biological activities that can be applied in medicine, health-care products, cosmeceuticals and other fields. Cordycepin (COR) is one of the major bioactive components identified from C. militaris. Thus, C. militaris and COR have attracted extensive attention. In this study, chemical synthetic methods and the biosynthesis pathway of COR were reviewed. As commercially COR was mainly isolated from C. militaris fermentation, the optimizations for liquid and solid fermentation and genetic modifications of C. militaris to increase COR content were also summarized. Moreover, the research progress of genetic modifications of C. militaris and methods for separation and purification COR were introduced. Finally, the existing problems and future research direction of C. militaris were discussed. This study provides a reference for the production of COR in the future.
Collapse
Affiliation(s)
- Li Wang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.W.); (H.Y.)
| | - Huanhuan Yan
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.W.); (H.Y.)
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.W.); (H.Y.)
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
- Correspondence: (B.Z.); (Z.H.); Tel.: +86-13755679856 (B.Z.); +86-15797865372 (Z.H.)
| | - Zhihong Hu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.W.); (H.Y.)
- Correspondence: (B.Z.); (Z.H.); Tel.: +86-13755679856 (B.Z.); +86-15797865372 (Z.H.)
| |
Collapse
|
14
|
Wu X, Wu T, Huang A, Shen Y, Zhang X, Song W, Wang S, Ruan H. New Insights Into the Biosynthesis of Typical Bioactive Components in the Traditional Chinese Medicinal Fungus Cordyceps militaris. Front Bioeng Biotechnol 2022; 9:801721. [PMID: 34976991 PMCID: PMC8719641 DOI: 10.3389/fbioe.2021.801721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022] Open
Abstract
Cordyceps militaris, a traditional medicinal ingredient with a long history of application in China, is regarded as a high-value fungus due to its production of various bioactive ingredients with a wide range of pharmacological effects in clinical treatment. Several typical bioactive ingredients, such as cordycepin, D-mannitol, cordyceps polysaccharides, and N6-(2-hydroxyethyl)-adenosine (HEA), have received increasing attention due to their antitumor, antioxidant, antidiabetic, radioprotective, antiviral and immunomodulatory activities. Here, we systematically sorted out the latest research progress on the chemical characteristics, biosynthetic gene clusters and pathways of these four typical bioactive ingredients. This summary will lay a foundation for obtaining low-cost and high-quality bioactive ingredients in large amounts using microbial cell factories in the future.
Collapse
Affiliation(s)
- Xiuyun Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Tao Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Ailin Huang
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Yuanyuan Shen
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Xuanyu Zhang
- New College, University of Toronto, Toronto, ON, Canada
| | - Wenjun Song
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Suying Wang
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
15
|
Long H, Qiu X, Cao L, Han R. Discovery of the signal pathways and major bioactive compounds responsible for the anti-hypoxia effect of Chinese cordyceps. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114215. [PMID: 34033902 DOI: 10.1016/j.jep.2021.114215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/24/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypoxia will cause an increase in the rate of fatigue and aging. Chinese cordyceps, a parasitic Thitarodes insect-Ophiocordyceps sinensis fungus complex in the Qinghai-Tibet Plateau, has long been used to ameliorate human conditions associated with aging and senescence, it is principally applied to treat fatigue, night sweating and other symptoms related to aging, and it may play the anti-aging and anti-fatigue effect by improving the body's hypoxia tolerance. AIMS OF THE STUDY The present study investigated the anti-hypoxia activity of Chinese cordyceps and explore the main corresponding signal pathways and bioactive compounds. MATERIALS AND METHODS In this study, network pharmacology analysis, molecular docking, cell and whole pharmacodynamic experiments were hired to study the major signal pathways and the bioactive compounds of Chinese cordyceps for anti-hypoxia activity. RESULTS 17 pathways which Chinese cordyceps acted on seemed to be related to the anti-hypoxia effect, and "VEGF signal pathway" was one of the most important pathway. Chinese cordyceps improved the survival rate and regulated the targets related VEGF signal pathway of H9C2 cells under hypoxia, and also had significant anti-hypoxia effects to mice. Chorioallantoic membrane model experiment showed that Chinese cordyceps and the main constituents of (9Z,12Z)-octadeca-9,12-dienoic acid and cerevisterol had significant angiogenic activity in hypoxia condition. CONCLUSION Based on the results of network pharmacology and molecular docking analysis, cell and whole pharmacodynamic experiments, promoting angiogenesis by regulating VEGF signal pathway might be one of the mechanisms of anti-hypoxia effect of Chinese cordyceps, (9Z, 12Z)-octadeca-9,12-dienoic acid and cerevisterol were considered as the major anti-hypoxia bioactive compounds in Chinese cordyceps.
Collapse
Affiliation(s)
- Hailin Long
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| | - Xuehong Qiu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| | - Richou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| |
Collapse
|
16
|
Improvement of cordycepin production by an isolated Paecilomyces hepiali mutant from combinatorial mutation breeding and medium screening. Bioprocess Biosyst Eng 2021; 44:2387-2398. [PMID: 34268619 DOI: 10.1007/s00449-021-02611-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/30/2021] [Indexed: 11/27/2022]
Abstract
Cordycepin is a major bioactive compound found in Cordyceps sinensis that exhibits a broad spectrum of biological activities. Here a Paecilomyces hepiali OR-1 strain was initially isolated from plateau soil for the bioproduction of cordycepin. Subsequently, strain modification including 60Co γ-ray and ultraviolet irradiation were employed to increase the cordycepin titer, resulted in a high-yield mutant strain P. hepiali ZJB18001 with the cordycepin content of 0.61 mg/gDCW, showing a 2.3-fold to that from the wild strain (0.26 mg/gDCW). Furthermore, medium screening based on Box-Behnken design and the response surface methodology facilitated the enhancement of cordycepin yield to the value of 0.96 mg/gDCW at 25 °C for 5 days in submerged cultivation with an optimized medium composition. The high cordycepin yield, rapid growth rate and stable genetic characteristics of P. hepiali ZJB18001 are beneficial in terms of costs and time for the industrialization of cordycepin production.
Collapse
|
17
|
Zeng Z, Mou D, Luo L, Zhong W, Duan L, Zou X. Different Cultivation Environments Affect the Yield, Bacterial Community and Metabolites of Cordyceps cicadae. Front Microbiol 2021; 12:669785. [PMID: 34046024 PMCID: PMC8144455 DOI: 10.3389/fmicb.2021.669785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/08/2021] [Indexed: 02/03/2023] Open
Abstract
Cordyceps cicadae is an entomogenous fungus with important uses in traditional Chinese medicine. However, its wild resources have not met consumers' demand due to excessive harvesting practices. Artificial cultivation is therefore an important alternative, but research on cultivating C. cicadae in natural habitats has not been reported. In this study, we aimed to explore the viability of cultivating C. cicadae in a natural habitat, in the soil of Pinus massoniana forest. We assessed and compared the yield, metabolite contents and bacterial community composition of C. cicadae grown in the Antheraea pernyi pupae at different growth stages, and under different cultivation conditions, in the soil of a natural habitat and in sterile glass bottles. Our results showed that cultivating C. cicadae in a natural habitat is feasible, with up to 95% of pupae producing C. cicadae fruiting bodies. The content of nitrogen compounds (amino acids) in C. cicadae cultivated in a natural habitat was significantly higher than in glass bottles, while the yield and carbon compound (mannitol and polysaccharide) and nucleoside (cordycepin and adenosine) contents were lower. Different bacterial genera were enriched in C. cicadae at different growth stages and cultivation environments, and these bacterial genera were closely related to metabolites contents during growth. This study demonstrated the viability of a novel cultivation method of C. cicadae, which could be used as an alternative to wild stocks of this fungus. These findings provided new insights into the growth mechanism of C. cicadae and its interaction with soil microorganisms.
Collapse
Affiliation(s)
- Zhaoying Zeng
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Lab of Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Dan Mou
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Li Luo
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Wenlin Zhong
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Lin Duan
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Xiao Zou
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Lab of Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| |
Collapse
|
18
|
Zhang B, Li B, Men XH, Xu ZW, Wu H, Qin XT, Xu F, Teng Y, Yuan SJ, Jin LQ, Liu ZQ, Zheng YG. Proteome sequencing and analysis of Ophiocordyceps sinensis at different culture periods. BMC Genomics 2020; 21:886. [PMID: 33308160 PMCID: PMC7731760 DOI: 10.1186/s12864-020-07298-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/02/2020] [Indexed: 01/04/2023] Open
Abstract
Background Ophiocordyceps sinensis is an important traditional Chinese medicine for its comprehensive active ingredients, such as cordycepin, cordycepic acid, and Cordyceps polysaccharide. O. sinensis zjut, a special strain isolated from O. sinensis, has similar pharmacological functions to wild O. sinensis. Currently, O. sinensis with artificial cultivation has been widely studied, but systematic fundamental research at protein levels has not been determined. Results Proteomes of O. sinensis zjut at different culture periods (growth period, 3rd day; pre-stable period, 6th day; and stable period, 9th day) were relatively quantified by relative isotope markers and absolute quantitative technology. In total, 4005 proteins were obtained and further annotated with Gene Ontology, Kyoto Encyclopedia of Genes and Genomes database. Based on the result of the annotations, metabolic pathways of active ingredients, amino acids and fatty acid were constructed, and the related enzymes were exhibited. Subsequently, comparative proteomics of O. sinensis zjut identified the differentially expressed proteins (DEPs) by growth in different culture periods, to find the important proteins involved in metabolic pathways of active ingredients. 605 DEPs between 6d-VS-3d, 1188 DEPs between 9d-VS-3d, and 428 DEPs between 9d-VS-6d were obtained, respectively. Conclusion This work provided scientific basis to study protein profile and comparison of protein expression levels of O. sinensis zjut, and it will be helpful for metabolic engineering works to active ingredients for exploration, application and improvement of this fungus. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07298-z.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bo Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiao-Hui Men
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhe-Wen Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hui Wu
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Xiang-Tian Qin
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Feng Xu
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Yi Teng
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Shui-Jin Yuan
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Li-Qun Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
19
|
Kaushik V, Singh A, Arya A, Sindhu SC, Sindhu A, Singh A. Enhanced production of cordycepin in Ophiocordyceps sinensis using growth supplements under submerged conditions. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00557. [PMID: 33294405 PMCID: PMC7691154 DOI: 10.1016/j.btre.2020.e00557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/24/2020] [Accepted: 11/09/2020] [Indexed: 11/23/2022]
Abstract
Cordycepin is a crucial bioactive compound produced by the fungus Cordyceps spp. Its therapeutic potential has been recognized for a wide range of biological properties such as anticancer, anti-diabetic, antidepressant, antioxidant, immunomodulation, etc. Moreover, its human random clinical trials depicted a promising anti-inflammatory activity that reduced the airway inflammation remarkably in asthmatic patients. But its overexploitation and low production of cordycepin in naturally growing biomass are insufficient to meet its existing market demand for its therapeutic use. Therefore, strategies for enhancement of cordycepin production in Cordyceps spp. are warranted. However, specifically, wild type Ophiocordyceps sinensis possesses a very low content of cordycepin and has restricted growth in natural mycelial biomass. To overcome these limitations, this study attempted to enhance cordycepin production in its mycelial biomass in vitro under submerged conditions by adding various growth supplements. The effect of these growth supplements was evaluated by reversed-phase high-performance liquid chromatography (RP-HPLC) which demonstrated that among nucleosides- hypoxanthine and adenosine; amino acids-glycine and glutamine; plant hormones- 1-naphthaleneacetic acid (NAA) and 3-indoleacetic acid (IAA); vitamin-thiamine (B1) from each group of growth supplements yielded a higher amount of cordycepin with 466.48 ± 3.88, 380.23 ± 1.78, 434.97 ± 2.32, 269.78 ± 2.92, 227.61 ± 2.34, 226.02 ± 1.69 and 185.26 ± 2.35 mg/L respectively as compared to control with 13.66 ± 0.64 mg/L. Further, at the transcriptional level, quantitative real time-polymerase chain reaction (qRT-PCR) analysis of genes associated with metabolism and cordycepin biosynthesis depicted significant upregulation of major downstream genes- NT5E, RNR, purA, and ADEK which corroborated well with RP-HPLC analysis. Taken together, the present study identified growth supplements as potential precursors to activate the cordycepin biosynthesis pathway leading to improved cordycepin production in O. sinensis.
Collapse
Key Words
- ANOVA, Analysis of Variance
- Cordycepin biosynthesis pathway
- Cordycepin production
- Growth supplements
- KH2PO4, Potassium dihydrogen phosphate
- Medicinal mushroom
- MgSO4, Magnesium sulfate
- Mycelial biomass
- RP-HPLC, Reversed-phase high-performance liquid chromatography
- SDA, Sabouraud dextrose agar
- SEM, Standard error mean
- cDNA, Complementary deoxyribonucleic acid
- dNTP, Deoxyribonucleotide triphosphate
- mRNA, Messenger ribonucleic acid
- mTOR, Mammalian target of rapamycin
- qRT-PCR, Quantitative reverse transcriptase-polymerase chain reaction
Collapse
Affiliation(s)
- Vikas Kaushik
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Sonepat, Haryana, India
| | - Amanvir Singh
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Sonepat, Haryana, India
| | - Aditi Arya
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Sonepat, Haryana, India
| | - Sangeeta Chahal Sindhu
- Department of Foods and Nutrition, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Anil Sindhu
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Sonepat, Haryana, India
| | - Ajay Singh
- Haryana Agro Industries Corporation, Research and Development Centre, Murthal, 131039, Sonepat, Haryana, India
| |
Collapse
|
20
|
Nxumalo W, Elateeq AA, Sun Y. Can Cordyceps cicadae be used as an alternative to Cordyceps militaris and Cordyceps sinensis? - A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112879. [PMID: 32305637 DOI: 10.1016/j.jep.2020.112879] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/08/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cordyceps cicadae (Mig.) Massee is one of the oldest and well-known traditional Chinese medicine (TCM), with its uses recorded as far back as the 5th century A.D. For centuries, C. cicadae has been used as food, tonic and folk medicine to treat malaria, palpitations, cancer, fever, diabetes, eye diseases, dizziness, and chronic kidney diseases. Although C. cicadae has been used as TCM for over 1600 years, it is not the most popular amongst the Cordyceps family. Cordyceps Sinensis (C. sinensis) and Cordyceps militaris (C. militaris) are the most studied and widely used, with a number of commercially available products derived from these two Cordyceps species. AIM OF THE REVIEW This review seeks to look at the research that has been conducted on C. cicadae over the past 30 years, reporting on the biological activities, development and utilization. This information was compared to that focused on C. sinensis and C. militaris. MATERIALS AND METHODS A literature search was conducted on different scientific search engines including, but not limited to "Web of Science", "ScienceDirect" and "Google Scholar" to identify published data on C. cicadae, I. cicadae, P. cicadae, C. sinensis and C. militaris. RESULTS Research conducted on C. cicadae over the past two decades have shown that it poses similar biological properties and chemical composition as C. sinensis and C. militaris. C. cicadae has been reported to grow in many geographic locations, as compared to C. sinensis, and can be artificially cultivated via different methods. CONCLUSION There exists sufficient evidence that C. cicadae has medicinal benefits and contain bioactive compounds similar to those found on C. sinensis and C. militaris. However, more research and standardization methods are still needed to directly compare C. cicadae with C. sinensis and C. militaris, in order to ascertain the suitability of C. cicadae as an alternative source of Cordyceps products.
Collapse
Affiliation(s)
- Winston Nxumalo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Department of Chemistry, University of Limpopo, Private Bag X1106, Sovenga, 0727, Polokwane, South Africa.
| | - Ahmed Abdelfattah Elateeq
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Horticulture Department, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, 11651, Egypt
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
21
|
Enhancement of protoplast preparation and regeneration of Hirsutella sinensis based on process optimization. Biotechnol Lett 2020; 42:2357-2366. [PMID: 32638189 DOI: 10.1007/s10529-020-02958-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To explore the optimal methods for the protoplast preparation and regeneration of Hirsutella sinensis by optimizing the limiting factors. RESULTS During the treatment of enzymatic protoplast preparation, mycelium cultured for 7 days was the optimal start material. The maximum protoplast preparation rate of 4.3 × 107 protoplasts/g fresh weight (FW) was obtained after 0.5 h treatment of 1 mg/ml mixed lytic enzymes in KH2PO4-K2HPO4 buffer (pH 5.5) with 0.6 M KCl at 18 °C. As for the protoplast regeneration, the maximum protoplast regeneration rate reached 12.32% through 5 × 103 protoplasts mL-1 cultivated for 20 days in the regeneration medium with 0.6 M mannitol and 1.5% agar. CONCLUSIONS The preparation and regeneration of H. sinensis protoplasts was firstly established based on process optimization and it provided a foundation for the study of H. sinensis mutagenesis.
Collapse
|
22
|
Yang L, Li G, Chai Z, Gong Q, Guo J. Synthesis of cordycepin: Current scenario and future perspectives. Fungal Genet Biol 2020; 143:103431. [PMID: 32610064 DOI: 10.1016/j.fgb.2020.103431] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/29/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Cordyceps genus, such as C. militaris and C. kyushuensis, is a source of a rare traditional Chinese medicine that has been used for the treatment of numerous chronic and malignant diseases. Cordycepin, 3'-deoxyadenosine, is a major active compound found in most Cordyceps. Cordycepin exhibits a variety of biological activities, including anti-tumor, immunomodulation, antioxidant, and anti-aging, among others, which could be applied in health products, medicine, cosmeceutical etc. fields. This review focuses on the synthesis methods for cordycepin. The current methods for cordycepin synthesis involve chemical synthesis, microbial fermentation, in vitro synthesis and biosynthesis; however, some defects are unavoidable and the production is still far from the demand of cordycepin. For the future study of cordycepin synthesis, based on the illumination of cordycepin biosynthesis pathway, genetical engineering of the Cordyceps strain or introducing microbes by virtue of synthetic biology will be the great potential strategies for cordycepin synthesis. This review will aid the future synthesis of the valuable cordycepin.
Collapse
Affiliation(s)
- Liyang Yang
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong 030619, Shanxi, PR China
| | - Guilan Li
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong 030619, Shanxi, PR China
| | - Zhi Chai
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong 030619, Shanxi, PR China
| | - Qiang Gong
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong 030619, Shanxi, PR China
| | - Jianquan Guo
- School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China.
| |
Collapse
|
23
|
The protective effect of cordyceps sinensis extract on cerebral ischemic injury via modulating the mitochondrial respiratory chain and inhibiting the mitochondrial apoptotic pathway. Biomed Pharmacother 2020; 124:109834. [PMID: 31978767 DOI: 10.1016/j.biopha.2020.109834] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/15/2019] [Accepted: 12/23/2019] [Indexed: 11/22/2022] Open
Abstract
Cerebral ischemia is a common refractory brain disease, resulting from a reduction in the blood flow to the brain. Mitochondrial dysfunction leads to ischemic stroke and brain injury. Cordyceps sinensis (CS) is an important traditional Chinese medicine, which has been linked to neuroprotection in recent studies. In this study, we investigated the role of the mitochondrial respiratory chain and the mitochondrial apoptotic pathway on the protective effect of Cordyceps sinensis extract (CSE) against cerebral ischemia injury both in vivo and in vitro. In a murine middle cerebral artery occlusion (MCAO) model, administration of CSE relieved neuronal morphological damage and attenuated the neuronal apoptosis. CSE also reduced neurobehavioral scores and oxygen free radical (OFR), while improving the levels of ATP, cytochrome c oxidase (COX), and mitochondrial complexes I-IV. Furthermore, the mRNA expression of Bax, cytochrome c (Cyt c) and caspase-3 were down-regulated. In brain microvascular endothelial cells (BMECs) exposed to oxygen and glucose deprivation (OGD), CSE prevented OGD-induced cellular apoptosis, and recovered the reduction of mitochondrial membrane potential (MMP). Moreover, CSE treatment induced an increase of Bcl-2 protein expression and a decrease of Bax, Cyt c and caspase-3 protein expression. Meanwhile, the caspase-3, -8, and -9 activities were also inhibited. The results indicate that CSE can relieve cerebral ischemia injury and exhibit protective effects via modulating the mitochondrial respiratory chain and inhibiting the mitochondrial apoptotic pathway.
Collapse
|
24
|
Transcriptome Analysis Reveals the Molecular Mechanisms Underlying Adenosine Biosynthesis in Anamorph Strain of Caterpillar Fungus. BIOMED RESEARCH INTERNATIONAL 2020; 2019:1864168. [PMID: 31915684 PMCID: PMC6935459 DOI: 10.1155/2019/1864168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/28/2019] [Indexed: 01/19/2023]
Abstract
Caterpillar fungus is a well-known fungal Chinese medicine. To reveal molecular changes during early and late stages of adenosine biosynthesis, transcriptome analysis was performed with the anamorph strain of caterpillar fungus. A total of 2,764 differentially expressed genes (DEGs) were identified (p ≤ 0.05, |log2 Ratio| ≥ 1), of which 1,737 were up-regulated and 1,027 were down-regulated. Gene expression profiling on 4–10 d revealed a distinct shift in expression of the purine metabolism pathway. Differential expression of 17 selected DEGs which involved in purine metabolism (map00230) were validated by qPCR, and the expression trends were consistent with the RNA-Seq results. Subsequently, the predicted adenosine biosynthesis pathway combined with qPCR and gene expression data of RNA-Seq indicated that the increased adenosine accumulation is a result of down-regulation of ndk, ADK, and APRT genes combined with up-regulation of AK gene. This study will be valuable for understanding the molecular mechanisms of the adenosine biosynthesis in caterpillar fungus.
Collapse
|
25
|
Lin S, Zhou C, Zhang H, Cai Z. Expression, purification and characterization of 5'-nucleotidase from caterpillar fungus by efficient genome-mining. Protein Expr Purif 2020; 168:105566. [PMID: 31899296 DOI: 10.1016/j.pep.2019.105566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 11/13/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
Abstract
5'- nucleotidase (5'-NT) is a key enzyme in nucleoside/nucleotide metabolic pathway, it plays an important role in the biosynthesis of cordycepin in caterpillar fungus. In this study, a 5'-NT gene was identified and mined from genomic DNA of caterpillar fungus, which was 1968 bp in length and encoded 656 amino acid residues. The recombinant 5'-NT was first time heterologously expressed in Pichia pastoris GS115, subsequently purified and functionally characterized. The optimal reaction temperature for 5'-NT was 35 °C, and it retained 52.8% of its residual activity after incubation at 50 °C for 1 h. The optimal reaction pH was 6.0 and it exhibited high activity over a neutral pH range. Furthermore, 5'-NT exhibited excellent Km (1.107 mM), Vmax (0.113 μmol/mg·min) and kcat (4.521 S-1) values compared with other typical 5'-nucleotidase. Moreover, substrate specificity analyses indicated that 5'-NT exhibited different phosphatase activity towards the substrates containing different basic groups. The work presented here could be useful to 5'-NT applications and provide more scientific basis and new ideas for the biosynthesis of artificial control cordycepin.
Collapse
Affiliation(s)
- Shan Lin
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, 518100, Guangdong, China; Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Cuibing Zhou
- Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Hancheng Zhang
- Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Zhiming Cai
- Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| |
Collapse
|
26
|
Chamyuang S, Owatworakit A, Honda Y. New insights into cordycepin production in Cordyceps militaris and applications. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S78. [PMID: 31576287 DOI: 10.21037/atm.2019.04.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sunita Chamyuang
- School of Science, Mae Fah Luang University, Chaing Rai, Thailand.,Microbial Products and Innovation Research Unit, Mae Fah Luang University, Chaing Rai, Thailand
| | - Amorn Owatworakit
- School of Science, Mae Fah Luang University, Chaing Rai, Thailand.,Microbial Products and Innovation Research Unit, Mae Fah Luang University, Chaing Rai, Thailand
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
27
|
Lou H, Lin J, Guo L, Wang X, Tian S, Liu C, Zhao Y, Zhao R. Advances in research on Cordyceps militaris degeneration. Appl Microbiol Biotechnol 2019; 103:7835-7841. [DOI: 10.1007/s00253-019-10074-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 11/30/2022]
|
28
|
Hirsutella sinensis Treatment Shows Protective Effects on Renal Injury and Metabolic Modulation in db/db Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4732858. [PMID: 31080482 PMCID: PMC6475559 DOI: 10.1155/2019/4732858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 12/13/2022]
Abstract
Hirsutella sinensis (HS) is the anamorph of the traditional Chinese medicine Cordyceps sinensis. Although the renal protective effect of HS has been reported, its effect on diabetic nephropathy (DN) remains unclear. In this study, db/db mice were used as the DN model, and the renal protective effect was evaluated after oral administration of HS for 6 and 12 weeks. Plasma, urine, and kidney samples were collected, and biochemical indicator measurements, pathological analysis, and metabolomics studies were performed. Biochemical assays showed that HS reduced the levels of fasting blood glucose (FBG), urinary albumin/creatinine ratio (ACR), and N-acetyl-beta-D-glucosaminidase (NAG) and increased the creatinine clearance (Ccr). HS alleviated glomerular and tubular glycogen accumulation and fibrosis and normalized the disordered ultrastructure of the glomerular filtration barrier. Metabolomics analysis of metabolites in the plasma, urine, and kidney indicated that HS modulated the perturbed glycolipid metabolism and amino acid turnover. HS reduced the elevated levels of metabolites involved in energy metabolism (TCA cycle, glycolysis, and pentose phosphate pathway) and nucleotide metabolism (pyrimidine metabolism and purine metabolism) in the kidneys of db/db mice. These results suggest that HS can protect against renal injury and that its efficacy involved metabolic modulation of the disturbed metabolome in db/db mice.
Collapse
|
29
|
Enrichment of cordycepin for cosmeceutical applications: culture systems and strategies. Appl Microbiol Biotechnol 2019; 103:1681-1691. [DOI: 10.1007/s00253-019-09623-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/17/2022]
|
30
|
Zhang X, Hu Q, Weng Q. Secondary metabolites (SMs) of Isaria cicadae and Isaria tenuipes. RSC Adv 2018; 9:172-184. [PMID: 35521576 PMCID: PMC9059538 DOI: 10.1039/c8ra09039d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/29/2018] [Indexed: 01/02/2023] Open
Abstract
Both Isaria cicadae and Isaria tenuipes are important entomopathogenic fungi used in health foods and traditional herbal medicines in East Asia. However, the safety concerns for both fungal species have been attracting significant attention. Thus, surveying their secondary metabolites (SMs) will be beneficial to improving the safety of their fungal products. In the case of I. cicadae, its SMs mainly include nucleosides, amino acids, beauvericins, myriocin, and oosporein. In contrast, trichothecene derivatives, isariotins, cyclopenta benzopyrans and PKs, are found in the case of I. tenuipes. Among them, beauvericins, myriocin, oosporein and many trichothecene derivatives are toxic compounds. The toxicity and side effects of the fungal products may be related to these SMs. Thus, to ensure the safety of fungal products, the residues standards of SMs need to be reported. Furthermore, methods for the detection of their SMs and biological identification of their strains must be considered. This review gives new insight into the secondary metabolites of medical and edible fungi.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- College of Agriculture, South China Agricultural University Guangzhou 510642 China
| | - Qiongbo Hu
- College of Agriculture, South China Agricultural University Guangzhou 510642 China
| | - Qunfang Weng
- College of Agriculture, South China Agricultural University Guangzhou 510642 China
| |
Collapse
|
31
|
Liu T, Liu Z, Yao X, Huang Y, Qu Q, Shi X, Zhang H, Shi X. Identification of cordycepin biosynthesis-related genes through de novo transcriptome assembly and analysis in Cordyceps cicadae. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181247. [PMID: 30662735 PMCID: PMC6304131 DOI: 10.1098/rsos.181247] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/20/2018] [Indexed: 05/08/2023]
Abstract
Cordyceps cicadae (Chanhua) is a parasitic fungus that grows on Cicada flammata larvae and is used to relieve exhaustion and treat numerous diseases, in part through its active constituent, cordycepin. We used de novo Illumina HiSeq 4000 sequencing to obtain transcriptomes of C. cicadae mycelium, fruiting body, and sclerotium, and identify differentially expressed genes. In the mycelium versus sclerotium libraries, 1576 upregulated and 2300 downregulated genes were identified. In the mycelium versus fruiting body and fruiting body versus sclerotium body libraries, 1604 and 1474 upregulated and 1365 and 1320 downregulated genes, respectively, were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses identified 19 genes differentially expressed in mycelium versus fruiting body as related to the purine pathway, along with 28 and 16 genes differentially expressed in the mycelium versus sclerotium and fruiting body versus sclerotium groups, respectively. Gene expression of six key enzymes was validated by quantitative polymerase chain reaction. Specifically, 5'-nucleotidase (c62060g1) and adenosine deaminase (c35629g1) in purine nucleotide metabolism, which are involved in cordycepin biosynthesis, were significantly upregulated in the sclerotium group. These findings improved our understanding of genes involved in the biosynthesis of cordycepin and other characteristic secondary metabolites in C. cicadae.
Collapse
Affiliation(s)
- Tengfei Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, People's Republic of China
| | - Ziyao Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, People's Republic of China
| | - Xueyan Yao
- Laboratory of Food Enzyme Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100110, People's Republic of China
| | - Ying Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, People's Republic of China
| | - Qingsong Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, People's Republic of China
| | - Xiaosa Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, People's Republic of China
| | - Hongmei Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, People's Republic of China
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, People's Republic of China
- Author for correspondence: Xinyuan Shi e-mail:
| |
Collapse
|
32
|
Jin J, Kang W, Zhong C, Qin Y, Zhou R, Liu H, Xie J, Chen L, Qin Y, Zhang S. The pharmacological properties of Ophiocordyceps xuefengensis revealed by transcriptome analysis. JOURNAL OF ETHNOPHARMACOLOGY 2018; 219:195-201. [PMID: 29481852 DOI: 10.1016/j.jep.2018.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/02/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Yao ethnic group in Xuefeng Mountains area have used Xuefeng cordyceps, the caterpillar-fungus complex of Ophiocordyceps xuefengensis, for treating a variety of diseases for long. Just like some other cordyceps, O. xuefengensis, which is identified as the sister taxon of O. sinensis in 2013, also seems to have broad pharmacological properties, not only enhancing human immunity, anti-bacteria, anti-virus, but also anti-tumor. However, investigation of the medicinal fugal species O. xuefengensis can be found only in few literature records since its pharmacological and therapeutic use is mainly in traditional Yao communities by local healers. AIM OF THE STUDY The aim of this study is to collect samples of Xuefeng cordyceps and isolate the strain of O. xuefengensis, to determine bioactive components and evaluate the anti-tumor activity, to obtain the gene expression profile of O. xuefengensis and reveal its pharmacological properties by de novo transcriptome analysis. Accordingly, we attempt to provide information and give a comprehensive understanding of this mysterious medicinal fugal species from traditional Yao communities of China. MATERIAL AND METHODS Bioactive components were determined with HPLC-DAD-Q-TOF-MS technology; in vitro anti-tumor activity against 6 cell lines was evaluated using standard MTT assay; transcriptome analysis was done by de novo sequencing; unique genes were functionally profiled basing on Gene Ontology Database and the targeted genes were examined by blast. RESULTS Trace cordycepin, an anti-tumor agent, was detected in O. xuefengensis water extract. To some extent, the raw water extract of O. xuefengensis showed in vitro anti-tumor activity, against A549, HepG2, MCF-7, PC-3 and Raji cell lines. A total of 94,858 transcripts and 49,001 unique genes were obtained, amongst, 43.4% unique genes were matched with those of O. sinensis. Not all supposed genes related to cordycepin biosynthetic pathways were found by transcriptome analysis. CONCLUSION According to the gene expression profile, O. xuefengensis is very close to medicinal fungus O. sinensis. Raw water extract of O. xuefengensis, to a certain degree, could inhibit the growth of tumor cells, indicating that this fungus could be a new resource for the exploration of anti-tumor drug.
Collapse
Affiliation(s)
- Jian Jin
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, PR China; Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Wenli Kang
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, PR China
| | - Can Zhong
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, PR China; Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, PR China
| | - You Qin
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, PR China; Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Rongrong Zhou
- Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Hao Liu
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, PR China; 2011 Collaboration and Innovation Center for Digital Chinese Medicine in Hunan, Changsha 410208, PR China
| | - Jing Xie
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, PR China; 2011 Collaboration and Innovation Center for Digital Chinese Medicine in Hunan, Changsha 410208, PR China
| | - Lin Chen
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, PR China; 2011 Collaboration and Innovation Center for Digital Chinese Medicine in Hunan, Changsha 410208, PR China
| | - Yuhui Qin
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, PR China; Hunan University of Chinese Medicine, Changsha 410208, PR China.
| | - Shuihan Zhang
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, PR China; 2011 Collaboration and Innovation Center for Digital Chinese Medicine in Hunan, Changsha 410208, PR China.
| |
Collapse
|
33
|
Heat and light stresses affect metabolite production in the fruit body of the medicinal mushroom Cordyceps militaris. Appl Microbiol Biotechnol 2018; 102:4523-4533. [DOI: 10.1007/s00253-018-8899-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 01/16/2023]
|
34
|
Fungal Cordycepin Biosynthesis Is Coupled with the Production of the Safeguard Molecule Pentostatin. Cell Chem Biol 2017; 24:1479-1489.e4. [DOI: 10.1016/j.chembiol.2017.09.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/05/2017] [Accepted: 09/01/2017] [Indexed: 12/31/2022]
|
35
|
Enhancement of Nucleoside Production in Hirsutella sinensis Based on Biosynthetic Pathway Analysis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2520347. [PMID: 29333435 PMCID: PMC5733210 DOI: 10.1155/2017/2520347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/25/2017] [Indexed: 11/18/2022]
Abstract
To enhance nucleoside production in Hirsutella sinensis, the biosynthetic pathways of purine and pyrimidine nucleosides were constructed and verified. The differential expression analysis showed that purine nucleoside phosphorylase, inosine monophosphate dehydrogenase, and guanosine monophosphate synthase genes involved in purine nucleotide biosynthesis were significantly upregulated 16.56-fold, 8-fold, and 5.43-fold, respectively. Moreover, dihydroorotate dehydrogenase, uridine nucleosidase, uridine/cytidine monophosphate kinase, and inosine triphosphate pyrophosphatase genes participating in pyrimidine nucleoside biosynthesis were upregulated 4.53-fold, 10.63-fold, 4.26-fold, and 5.98-fold, respectively. To enhance the nucleoside production, precursors for synthesis of nucleosides were added based on the analysis of biosynthetic pathways. Uridine and cytidine contents, respectively, reached 5.04 mg/g and 3.54 mg/g when adding 2 mg/mL of ribose, resulting in an increase of 28.6% and 296% compared with the control, respectively. Meanwhile, uridine and cytidine contents, respectively, reached 10.83 mg/g 2.12 mg/g when adding 0.3 mg/mL of uracil, leading to an increase of 176.3% and 137.1%, respectively. This report indicated that fermentation regulation was an effective way to enhance the nucleoside production in H. sinensis based on biosynthetic pathway analysis.
Collapse
|
36
|
Michailidou F, Chung C, Brown MJB, Bent AF, Naismith JH, Leavens WJ, Lynn SM, Sharma SV, Goss RJM. Pac13 is a Small, Monomeric Dehydratase that Mediates the Formation of the 3'-Deoxy Nucleoside of Pacidamycins. Angew Chem Int Ed Engl 2017; 56:12492-12497. [PMID: 28786545 PMCID: PMC5656905 DOI: 10.1002/anie.201705639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/28/2017] [Indexed: 01/27/2023]
Abstract
The uridyl peptide antibiotics (UPAs), of which pacidamycin is a member, have a clinically unexploited mode of action and an unusual assembly. Perhaps the most striking feature of these molecules is the biosynthetically unique 3'-deoxyuridine that they share. This moiety is generated by an unusual, small and monomeric dehydratase, Pac13, which catalyses the dehydration of uridine-5'-aldehyde. Here we report the structural characterisation of Pac13 with a series of ligands, and gain insight into the enzyme's mechanism demonstrating that H42 is critical to the enzyme's activity and that the reaction is likely to proceed via an E1cB mechanism. The resemblance of the 3'-deoxy pacidamycin moiety with the synthetic anti-retrovirals, presents a potential opportunity for the utilisation of Pac13 in the biocatalytic generation of antiviral compounds.
Collapse
Affiliation(s)
- Freideriki Michailidou
- School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
- GSKStevenageSG1 2NYUK
| | | | | | - Andrew F. Bent
- School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - James H. Naismith
- School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | | | | | - Sunil V. Sharma
- School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Rebecca J. M. Goss
- School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| |
Collapse
|
37
|
Michailidou F, Chung C, Brown MJB, Bent AF, Naismith JH, Leavens WJ, Lynn SM, Sharma SV, Goss RJM. Pac13 is a Small, Monomeric Dehydratase that Mediates the Formation of the 3′‐Deoxy Nucleoside of Pacidamycins. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Freideriki Michailidou
- School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
- GSK Stevenage SG1 2NY UK
| | | | | | - Andrew F. Bent
- School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - James H. Naismith
- School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | | | | | - Sunil V. Sharma
- School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - Rebecca J. M. Goss
- School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| |
Collapse
|
38
|
Genome-scale metabolic network of Cordyceps militaris useful for comparative analysis of entomopathogenic fungi. Gene 2017; 626:132-139. [DOI: 10.1016/j.gene.2017.05.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/12/2017] [Accepted: 05/10/2017] [Indexed: 11/21/2022]
|
39
|
Mining and characterization of two novel chitinases from Hirsutella sinensis using an efficient transcriptome-mining approach. Protein Expr Purif 2017; 133:81-89. [PMID: 28279819 DOI: 10.1016/j.pep.2017.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/28/2017] [Accepted: 03/04/2017] [Indexed: 02/04/2023]
Abstract
Two novel family 18 chitinases, chiA and chiH, were identified and cloned from the transcriptome of H. sinensis based on the transcriptome sequence data. The recombinant chitinases were overexpressed in Escherichia coli BL21, subsequently purified and functionally characterized. The optimal temperature and pH for chiA were 55 °C and 5.0, respectively, and those for chiH were 50 °C and 5.0, respectively. The highest enzyme activities of 11.5 U/mg and 8.1 U/mg were obtained for chiA and chiH, respectively, when colloidal chitin was used as the substrate with Ba2+. chiA exhibited higher Vmax of 1.94 μmol/μg/h and kcat of 1.443 S-1 than those of chiH with Vmax of 1.63 μmol/μg/h and kcat of 1.175 S-1, and both were efficient towards colloidal chitin compared with other typical family 18 chitinases. Substrate specificity and gene expression analyses indicated that chiA and chiH preferred substrates containing N-acetyl groups, such as colloidal chitin and glycol chitin, while no activity was detected toward laminarin, cellobiose, carboxymethyl cellulose and starch. The work presented here would aid in the understanding and performance of future studies on the infection mechanism of H. sinensis.
Collapse
|
40
|
Yu SH, Dubey NK, Li WS, Liu MC, Chiang HS, Leu SJ, Shieh YH, Tsai FC, Deng WP. Cordyceps militaris Treatment Preserves Renal Function in Type 2 Diabetic Nephropathy Mice. PLoS One 2016; 11:e0166342. [PMID: 27832180 PMCID: PMC5104498 DOI: 10.1371/journal.pone.0166342] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
Diabetic nephropathy is derived from long-term effects of high blood glucose on kidney function in type 2 diabetic patients. Several antidiabetic drugs and herbal medications have failed to prevent episodes of DN. Hence, this study aimed to further investigate the renal injury-reducing effect of antidiabetic CmNo1, a novel combination of powders of fruiting bodies and mycelia of Cordyceps militaris. After being administered with streptozotocin-nicotinamide and high-fat-diet, the diabetic nephropathy mouse model displayed elevated blood glucose and renal dysfunction markers including serum creatinine and kidney-to-body weight ratio. These elevated markers were significantly mitigated following 8 weeks CmNo1 treatment. Moreover, the chronic hyperglycemia-induced pathological alteration in renal tissue were also ameliorated. Besides, immunohistochemical study demonstrated a substantial reduction in elevated levels of carboxymethyl lysine, an advanced glycation end product. Elevated collagenous deposition in DN group was also attenuated through CmNo1 administration. Moreover, the enhanced levels of transforming growth factor-β1, a fibrosis-inducing protein in glomerulus were also markedly dampened. Furthermore, auxiliary risk factors in DN like serum triglycerides and cholesterol were found to be increased but were decreased by CmNo1 treatment. Conclusively, the results suggests that CmNo1 exhibit potent and efficacious renoprotective action against hyperglycemia-induced DN.
Collapse
MESH Headings
- Animals
- Biological Products/chemistry
- Biological Products/therapeutic use
- Collagen/analysis
- Cordyceps/chemistry
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/physiopathology
- Diabetic Nephropathies/blood
- Diabetic Nephropathies/complications
- Diabetic Nephropathies/drug therapy
- Diabetic Nephropathies/physiopathology
- Fruiting Bodies, Fungal/chemistry
- Glycation End Products, Advanced/analysis
- Glycogen/analysis
- Hypoglycemic Agents/chemistry
- Hypoglycemic Agents/therapeutic use
- Kidney/drug effects
- Kidney/physiopathology
- Kidney Function Tests
- Mice
- Mice, Inbred C57BL
- Mycelium/chemistry
- Streptozocin
- Transforming Growth Factor beta1/analysis
Collapse
Affiliation(s)
- Sung-Hsun Yu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Stem Cell Research Center, Taipei Medical University, Taipei, Taiwan
| | - Navneet Kumar Dubey
- Stem Cell Research Center, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Wei-Shan Li
- Stem Cell Research Center, Taipei Medical University, Taipei, Taiwan
| | - Ming-Che Liu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Department of Urology, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Han-Sun Chiang
- Division of Urology, Department of Surgery, Cathay General Hospital, New Taipei City, Taiwan
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Sy-Jye Leu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ying-Hua Shieh
- Department of Family Medicine, Taipei Medical University, Wan Fang Hospital, Taipei, Taiwan
| | | | - Win-Ping Deng
- Stem Cell Research Center, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- * E-mail:
| |
Collapse
|