1
|
Wu YN, Su D, Yang J, Yi Y, Wang AD, Yang M, Li JL, Fan BY, Chen GT, Wang WL, Ling B. Biotransformation of Ursonic Acid by Aspergillus ochraceus and Aspergillus oryzae to Discover Anti-Neuroinflammatory Derivatives. Molecules 2023; 28:7943. [PMID: 38138433 PMCID: PMC10745867 DOI: 10.3390/molecules28247943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Biotransformation of ursonic acid (1) by two fungal strains Aspergillus ochraceus CGMCC 3.5324 and Aspergillus oryzae CGMCC 3.407 yielded thirteen new compounds (4, 5, 7-10, and 13-19), along with five recognized ones. The structural details of new compounds were determined through spectroscopic examination (NMR, IR, and HR-MS) and X-ray crystallography. Various modifications, including hydroxylation, epoxidation, lactonization, oxygen introduction, and transmethylation, were identified on the ursane core. Additionally, the anti-neuroinflammatory efficacy of these derivatives was assessed on BV-2 cells affected by lipopolysaccharides. It was observed that certain methoxylated and epoxylated derivatives (10, 16, and 19) showcased enhanced suppressive capabilities, boasting IC50 values of 8.2, 6.9, and 5.3 μM. Such ursonic acid derivatives might emerge as potential primary molecules in addressing neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan-Ni Wu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China (W.-L.W.)
| | - Dan Su
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China (W.-L.W.)
| | - Jia Yang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China (W.-L.W.)
| | - Ying Yi
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China (W.-L.W.)
| | - An-Dong Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China (W.-L.W.)
| | - Min Yang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China (W.-L.W.)
| | - Jian-Lin Li
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China (W.-L.W.)
| | - Bo-Yi Fan
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China (W.-L.W.)
| | - Guang-Tong Chen
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China (W.-L.W.)
| | - Wen-Li Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China (W.-L.W.)
| | - Bai Ling
- Department of Pharmacy, The Fourth Affiliated Hospital of Nantong University, The First People’s Hospital of Yancheng, 166 Yulongxi Road, Yancheng 224005, China
| |
Collapse
|
2
|
Abstract
Whole-cell immobilization by entrapment in natural polymers can be a tool for morphological control and facilitate biomass retention. In this study, the possibility of immobilizing the filamentous fungus Aspergillus oryzae for l-malic acid production was evaluated with the two carbon sources acetate and glucose. A. oryzae conidia were entrapped in alginate, agar, and κ-carrageenan and production was monitored in batch processes in shake flasks and 2.5-L bioreactors. With glucose, the malic acid concentration after 144 h of cultivation using immobilized particles was mostly similar to the control with free biomass. In acetate medium, production with immobilized conidia of A. oryzae in shake flasks was delayed and titers were generally lower compared to cultures with free mycelium. While all immobilization matrices were stable in glucose medium, disintegration of bead material and biomass detachment in acetate medium was observed in later stages of the fermentation. Still, immobilization proved advantageous in bioreactor cultivations with acetate and resulted in increased malic acid titers. This study is the first to evaluate immobilization of A. oryzae for malic acid production and describes the potential but also challenges regarding the application of different matrices in glucose and acetate media.
Collapse
|
3
|
Biocatalytic Decarboxylation of Aromatic l-Amino Acids with In Situ Removal of Both Products for Enhanced Production of Biogenic Amines. Catal Letters 2021. [DOI: 10.1007/s10562-021-03535-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
4
|
Singh D, Lee S, Lee CH. Fathoming Aspergillus oryzae metabolomes in formulated growth matrices. Crit Rev Biotechnol 2019; 39:35-49. [PMID: 30037282 DOI: 10.1080/07388551.2018.1490246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 05/17/2018] [Accepted: 05/27/2018] [Indexed: 01/11/2023]
Abstract
The stochasticity of Aspergillus oryzae (Trivially: the koji mold) pan-metabolomes commensurate with its ubiquitously distributed landscapes, i.e. growth matrices have been seemed uncharted since its food fermentative systems are mostly being investigated. In this review, we explicitly have discussed the likely tendencies of A. oryzae metabolomes pertaining to its growth milieu formulated with substrate matrices of varying nature, composition, texture, and associated physicochemical parameters. We envisaged typical food matrices, namely, meju, koji, and moromi as the semi-natural cultivation models toward delineating the metabolomic patterns of the koji mold, which synergistically influences the organoleptic and functional properties of the end products. Further, we highlighted how tailored conditions in sub-natural growth matrices, i.e. synthetic cultivation media blends, inducers, and growth surfaces, may influence A. oryzae metabolomes and targeted phenotypes. In general, the sequential or synchronous growth of A. oryzae on formulated matrices results in a number of metabolic tradeoffs with its immediate microenvironment influencing its adaptive and regulatory metabolomes. In broader context, evaluating the metabolic plasticity of A. oryzae relative to the tractable variables in formulated growth matrices might help approximate its growth and metabolism in the more complex natural matrices and environs. These approaches may considerably help in the design and manipulation of hybrid cultivation systems towards the efficient harnessing of commercial molds.
Collapse
Affiliation(s)
- Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Sunmin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| |
Collapse
|