1
|
Kar P, Oriola AO, Oyedeji AO. Molecular Docking Approach for Biological Interaction of Green Synthesized Nanoparticles. Molecules 2024; 29:2428. [PMID: 38893302 PMCID: PMC11173450 DOI: 10.3390/molecules29112428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, significant progress has been made in the subject of nanotechnology, with a range of methods developed to synthesize precise-sized and shaped nanoparticles according to particular requirements. Often, the nanoparticles are created by employing dangerous reducing chemicals to reduce metal ions into uncharged nanoparticles. Green synthesis or biological approaches have been used recently to circumvent this issue because biological techniques are simple, inexpensive, safe, clean, and extremely productive. Nowadays, much research is being conducted on how different kinds of nanoparticles connect to proteins and nucleic acids using molecular docking models. Therefore, this review discusses the most recent advancements in molecular docking capacity to predict the interactions between various nanoparticles (NPs), such as ZnO, CuO, Ag, Au, and Fe3O4, and biological macromolecules.
Collapse
Affiliation(s)
- Pallab Kar
- African Medicinal Flora and Fauna Research Niche, Walter Sisulu University, Mthatha 5117, South Africa;
| | - Ayodeji O. Oriola
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha 5117, South Africa
| | - Adebola O. Oyedeji
- African Medicinal Flora and Fauna Research Niche, Walter Sisulu University, Mthatha 5117, South Africa;
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha 5117, South Africa
| |
Collapse
|
2
|
Kanak KR, Dass RS, Pan A. Anti-quorum sensing potential of selenium nanoparticles against LasI/R, RhlI/R, and PQS/MvfR in Pseudomonas aeruginosa: a molecular docking approach. Front Mol Biosci 2023; 10:1203672. [PMID: 37635941 PMCID: PMC10449602 DOI: 10.3389/fmolb.2023.1203672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Pseudomonas aeruginosa is an infectious pathogen which has the ability to cause primary and secondary contagions in the blood, lungs, and other body parts of immunosuppressed individuals, as well as community-acquired diseases, such as folliculitis, osteomyelitis, pneumonia, and others. This opportunistic bacterium displays drug resistance and regulates its pathogenicity via the quorum sensing (QS) mechanism, which includes the LasI/R, RhlI/R, and PQS/MvfR systems. Targeting the QS systems might be an excellent way to treat P. aeruginosa infections. Although a wide array of antibiotics, namely, newer penicillins, cephalosporins, and combination drugs are being used, the use of selenium nanoparticles (SeNPs) to cure P. aeruginosa infections is extremely rare as their mechanistic interactions are weakly understood, which results in carrying out this study. The present study demonstrates a computational approach of binding the interaction pattern between SeNPs and the QS signaling proteins in P. aeruginosa, utilizing multiple bioinformatics approaches. The computational investigation revealed that SeNPs were acutely 'locked' into the active region of the relevant proteins by the abundant residues in their surroundings. The PatchDock-based molecular docking analysis evidently indicated the strong and significant interaction between SeNPs and the catalytic cleft of LasI synthase (Phe105-Se = 2.7 Å and Thr121-Se = 3.8 Å), RhlI synthase (Leu102-Se = 3.7 Å and Val138-Se = 3.2 Å), transcriptional receptor protein LasR (Lys42-Se = 3.9 Å, Arg122-Se = 3.2 Å, and Glu124-Se = 3.9 Å), RhlR (Tyr43-Se = 2.9 Å, Tyr45-Se = 3.4 Å, and His61-Se = 3.5 Å), and MvfR (Leu208-Se = 3.2 Å and Arg209-Se = 4.0 Å). The production of acyl homoserine lactones (AHLs) was inhibited by the use of SeNPs, thereby preventing QS as well. Obstructing the binding affinity of transcriptional regulatory proteins may cause the suppression of LasR, RhlR, and MvfR systems to become inactive, thereby blocking the activation of QS-regulated virulence factors along with their associated gene expression. Our findings clearly showed that SeNPs have anti-QS properties against the established QS systems of P. aeruginosa, which strongly advocated that SeNPs might be a potent solution to tackle drug resistance and a viable alternative to conventional antibiotics along with being helpful in therapeutic development to cure P. aeruginosa infections.
Collapse
Affiliation(s)
- Kanak Raj Kanak
- Fungal Genetics and Mycotoxicology Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University (A Central University), Pondicherry, India
| | - Regina Sharmila Dass
- Fungal Genetics and Mycotoxicology Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University (A Central University), Pondicherry, India
| | - Archana Pan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University (A Central University), Pondicherry, India
| |
Collapse
|
3
|
Preet G, Astakala RV, Gomez-Banderas J, Rajakulendran JE, Hasan AH, Ebel R, Jaspars M. Virtual Screening of a Library of Naturally Occurring Anthraquinones for Potential Anti-Fouling Agents. Molecules 2023; 28:molecules28030995. [PMID: 36770663 PMCID: PMC9920117 DOI: 10.3390/molecules28030995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Marine biofouling is the undesired accumulation of organic molecules, microorganisms, macroalgae, marine invertebrates, and their by-products on submerged surfaces. It is a serious challenge for marine vessels and the oil, gas, and renewable energy industries, as biofouling can cause economic losses for these industries. Natural products have been an abundant source of therapeutics since the start of civilisation. Their use as novel anti-fouling agents is a promising approach for replacing currently used, harmful anti-fouling agents. Anthraquinones (AQs) have been used for centuries in the food, pharmaceutical, cosmetics, and paint industries. Citreorosein and emodin are typical additives used in the anti-fouling paint industry to help improve the global problem of biofouling. This study is based on our previous study, in which we presented the promising activity of structurally related anthraquinone compounds against biofilm-forming marine bacteria. To help uncover the anti-fouling potential of other AQ-related structures, 2194 compounds from the COCONUT natural products database were analysed. Molecular docking analysis was performed to assess the binding strength of these compounds to the LuxP protein in Vibrio carchariae. The LuxP protein is a vital binding protein responsible for the movements of autoinducers within the quorum sensing system; hence, interrupting the process at an early stage could be an effective strategy. Seventy-six AQ structures were found to be highly docked, and eight of these structures were used in structure-based pharmacophore modelling, resulting in six unique pharmacophore features.
Collapse
Affiliation(s)
- Gagan Preet
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
| | | | - Jessica Gomez-Banderas
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
- The National Decommissioning Centre, University of Aberdeen, Aberdeen AB41 6AA, UK
| | - Joy Ebenezer Rajakulendran
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
- Department of Chemistry, Eastern University, Chenkaladi 30350, Sri Lanka
| | - Ahlam Haj Hasan
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
- The Medicinal Chemistry and Pharmacognosy Department, College of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rainer Ebel
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
- Correspondence:
| |
Collapse
|
4
|
Wen H, Shi H, Jiang N, Qiu J, Lin F, Kou Y. Antifungal mechanisms of silver nanoparticles on mycotoxin producing rice false smut fungus. iScience 2022; 26:105763. [PMID: 36582831 PMCID: PMC9793317 DOI: 10.1016/j.isci.2022.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Ustilaginoidea virens, which causes rice false smut disease, is a destructive filamentous fungal pathogen, attracting more attention to search for effective fungicides against U. virens. Here, the results showed that the inhibition of 2 nm AgNPs on U. virens growth and virulence displayed concentration-dependent manner. Abnormalities of fungal morphology were observed upon exposure to AgNPs. RNA-sequencing (RNA-seq) analysis revealed that AgNPs treatment up-regulated 1185 genes and down-regulated 937 genes, which significantly overlapped with the methyltransferase UvKmt6-regulated genes. Furthermore, we found that AgNPs reduced the UvKmt6-mediated H3K27me3 modification, resulting in the up-regulation of ustilaginoidin biosynthetic genes The decrease of H3K27me3 level was associated with the inhibition of mycelial growth by AgNPs treatment. These results suggested that AgNPs are an effective nano-fungicide for the control of rice false smut disease, but when using AgNPs, it needs to be combined with mycotoxin-reducing fungicides to reduce the risk of toxin pollution.
Collapse
Affiliation(s)
- Hui Wen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Huanbin Shi
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Nan Jiang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Fucheng Lin
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanjun Kou
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
- Corresponding author
| |
Collapse
|
5
|
Bhattacharjee G, Gohil J, Gohil N, Chaudhari H, Gangapuram B, Khambhati K, Maurya R, Alzahrani KJ, Ramakrishna S, Singh V. Biosynthesis and characterization of Serratia marcescens derived silver nanoparticles: Investigating its antibacterial, anti-biofilm potency and molecular docking analysis with biofilm-associated proteins. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Tong Q, Li T, Jiang L, Wang Z, Qian Y. Nanoparticle, a promising therapeutic strategy for the treatment of infective endocarditis. Anatol J Cardiol 2022; 26:90-99. [PMID: 35190356 PMCID: PMC8878918 DOI: 10.5152/anatoljcardiol.2021.867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 07/30/2023] Open
Abstract
Infective endocarditis (IE) has been recognized as a biofilm-related disease caused by pathogenic microorganisms, such as bacteria and fungi that invade and damage the heart valves and endocardium. There are many difficulties and challenges in the antimicrobial treatment of IE, including multi-drug resistant pathogens, large dose of drug administration with following side effects, and poor prognosis. For the past few years, the development of nanotechnology has promoted the use of nanoparticles as antimicrobial nano-pharmaceuticals or novel drug delivery systems (NDDS) in antimicrobial therapy for chronic infections and biofilm-related infectious disease as these molecules exhibit several advantages. Therefore, nanoparticles have a potential role to play in solving problems in the treatment of IE, including improving antimicrobial activity, increasing drug bioavailability, minimizing frequency of drug administration, and preventing side effects. In this article, we review the latest advances in nanoparticles against drug-resistant bacteria in biofilm and recommends nanoparticles as an alternative strategy to the antibiotic treatment of IE.
Collapse
Affiliation(s)
- Qi Tong
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University; Chengdu-China
| | - Tao Li
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University; Chengdu-China
| | - Lu Jiang
- Department of Cardiovascular Surgery, Sichuan Provincial People's University of Electronic Science and Technology of China; Chengdu-China
| | - Zhengjie Wang
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University; Chengdu-China
| | - Yongjun Qian
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University; Chengdu-China
| |
Collapse
|
7
|
Antibacterial, Antifungal, and Antioxidant Activities of Silver Nanoparticles Biosynthesized from Bauhinia tomentosa Linn. Antioxidants (Basel) 2021; 10:antiox10121959. [PMID: 34943062 PMCID: PMC8749995 DOI: 10.3390/antiox10121959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 01/03/2023] Open
Abstract
The biogenic synthesis of silver nanoparticles (AgNPs) has a wide range of applications in the pharmaceutical industry. Here, we synthesized AgNPs using the aqueous flower extract of Bauhinia tomentosa Linn. Formation of AgNPs was observed using ultraviolet-visible light spectrophotometry at different time intervals. Maximum absorption was observed after 4 h at 420 nm due to the reduction of Ag+ to Ag0. The stabilizing activity of functional groups was identified by Fourier-transform infrared spectroscopy. Size and surface morphology were also analyzed using scanning electron microscopy. The present study revealed the AgNPs were spherical in form with a diameter of 32 nm. The face-centered cubic structure of AgNPs was indexed using X-ray powder diffraction with peaks at 2θ = 37°, 49°, 63°, and 76° (corresponding to the planes of silver 111, 200, 220, 311), respectively. Energy-dispersive X-ray spectroscopy revealed that pure reduced silver (Ag0) was the major constituent (59.08%). Antimicrobial analyses showed that the biosynthesized AgNPs possess increased antibacterial activity (against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative), with larger zone formation against S. aureus (9.25 mm) compared with that of E. coli (6.75 mm)) and antifungal activity (against Aspergillus flavus and Candida albican (with superior inhibition against A. flavus (zone of inhibition: 7 mm) compared with C. albicans (zone of inhibition: 5.75 mm)). Inhibition of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was found to be dose-dependent with half-maximal inhibitory concentration (IC50) values of 56.77 μg/mL and 43.03 μg/mL for AgNPs and ascorbic acid (control), respectively, thus confirming that silver nanoparticles have greater antioxidant activity than ascorbic acid. Molecular docking was used to determine the mode of antimicrobial interaction of our biosynthesized B. tomentosa Linn flower-powder extract-derived AgNPs. The biogenic AgNPs preferred hydrophobic contacts to inhibit bacterial and fungal sustainability with reducing antioxidant properties, suggesting that biogenic AgNPs can serve as effective medicinal agents.
Collapse
|
8
|
Butea monosperma seed extract mediated biosynthesis of ZnO NPs and their antibacterial, antibiofilm and anti-quorum sensing potentialities. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103044] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
9
|
Abdelsattar AS, Dawoud A, Helal MA. Interaction of nanoparticles with biological macromolecules: a review of molecular docking studies. Nanotoxicology 2020; 15:66-95. [PMID: 33283572 DOI: 10.1080/17435390.2020.1842537] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The high frequency of using engineered nanoparticles in various medical applications entails a deep understanding of their interaction with biological macromolecules. Molecular docking simulation is now widely used to study the binding of different types of nanoparticles with proteins and nucleic acids. This helps not only in understanding the mechanism of their biological action but also in predicting any potential toxicity. In this review, the computational techniques used in studying the nanoparticles interaction with biological macromolecules are covered. Then, a comprehensive overview of the docking studies performed on various types of nanoparticles will be offered. The implication of these predicted interactions in the biological activity and/or toxicity is also discussed for each type of nanoparticles.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, Giza, Egypt
| | - Alyaa Dawoud
- Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohamed A Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.,Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
10
|
Joshi AS, Singh P, Mijakovic I. Interactions of Gold and Silver Nanoparticles with Bacterial Biofilms: Molecular Interactions behind Inhibition and Resistance. Int J Mol Sci 2020; 21:E7658. [PMID: 33081366 PMCID: PMC7589962 DOI: 10.3390/ijms21207658] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Many bacteria have the capability to form a three-dimensional, strongly adherent network called 'biofilm'. Biofilms provide adherence, resourcing nutrients and offer protection to bacterial cells. They are involved in pathogenesis, disease progression and resistance to almost all classical antibiotics. The need for new antimicrobial therapies has led to exploring applications of gold and silver nanoparticles against bacterial biofilms. These nanoparticles and their respective ions exert antimicrobial action by damaging the biofilm structure, biofilm components and hampering bacterial metabolism via various mechanisms. While exerting the antimicrobial activity, these nanoparticles approach the biofilm, penetrate it, migrate internally and interact with key components of biofilm such as polysaccharides, proteins, nucleic acids and lipids via electrostatic, hydrophobic, hydrogen-bonding, Van der Waals and ionic interactions. Few bacterial biofilms also show resistance to these nanoparticles through similar interactions. The nature of these interactions and overall antimicrobial effect depend on the physicochemical properties of biofilm and nanoparticles. Hence, study of these interactions and participating molecular players is of prime importance, with which one can modulate properties of nanoparticles to get maximal antibacterial effects against a wide spectrum of bacterial pathogens. This article provides a comprehensive review of research specifically directed to understand the molecular interactions of gold and silver nanoparticles with various bacterial biofilms.
Collapse
Affiliation(s)
- Abhayraj S. Joshi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (A.S.J.); (P.S.)
| | - Priyanka Singh
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (A.S.J.); (P.S.)
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (A.S.J.); (P.S.)
- Department of Biology and Biological Engineering, Division of Systems and Synthetic Biology, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| |
Collapse
|
11
|
Subhaswaraj P, Syed A, Siddhardha B. Novel Nanotherapeutics as Next-generation Anti-infective Agents: Current Trends and Future Prospectives. Curr Drug Discov Technol 2020; 17:457-468. [PMID: 31309893 DOI: 10.2174/1570163816666190715120708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/08/2019] [Accepted: 04/30/2019] [Indexed: 12/16/2022]
Abstract
With the ever-increasing population and improvement in the healthcare system in the 21st century, the incidence of chronic microbial infections and associated health disorders has also increased at a striking pace. The ability of pathogenic microorganisms to form biofilm matrix aggravates the situation due to antibiotic resistance phenomenon resulting in resistance against conventional antibiotic therapy which has become a public health concern. The canonical Quorum Sensing (QS) signaling system hierarchically regulates the expression of an array of virulence phenotypes and controls the development of biofilm dynamics. It is imperative to develop an alternative, yet effective and non-conventional therapeutic approach, popularly known as "anti-infective therapy" which seems to be interesting. In this regard, targeting microbial QS associated virulence and biofilm development proves to be a quite astonishing approach in counteracting the paucity of traditional antibiotics. A number of synthetic and natural compounds are exploited for their efficacy in combating QS associated microbial infections but the bioavailability and biocompatibility limit their widespread applications. In this context, the nanotechnological intervention offers a new paradigm for widespread biomedical applications starting from targeted drug delivery to diagnostics for the diagnosis and treatment of infectious diseases, particularly to fight against microbial infections and antibiotics resistance in biofilms. A wide range of nanomaterials ranging from metallic nanoparticles to polymeric nanoparticles and recent advances in the development of carbon-based nanomaterials such as Carbon Nanotubes (CNTs), Graphene Oxide (GO) also immensely exhibited intrinsic antiinfective properties when targeted towards microbial infections and associated MDR phenomenon. In addition, the use of nano-based platforms as carriers emphatically increases the efficacy of targeted and sitespecific delivery of potential drug candidates for preventing microbial infections.
Collapse
Affiliation(s)
- Pattnaik Subhaswaraj
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry-605 014, India
| | - Asad Syed
- Botany and Microbiology Department, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Busi Siddhardha
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry-605 014, India
| |
Collapse
|
12
|
Masum MMI, Siddiqa MM, Ali KA, Zhang Y, Abdallah Y, Ibrahim E, Qiu W, Yan C, Li B. Biogenic Synthesis of Silver Nanoparticles Using Phyllanthus emblica Fruit Extract and Its Inhibitory Action Against the Pathogen Acidovorax oryzae Strain RS-2 of Rice Bacterial Brown Stripe. Front Microbiol 2019; 10:820. [PMID: 31110495 PMCID: PMC6501729 DOI: 10.3389/fmicb.2019.00820] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/01/2019] [Indexed: 12/05/2022] Open
Abstract
Biogenic synthesis of silver nanoparticles (AgNPs) using plants has become a promising substitute to the conventional chemical synthesis method. In this study, we report low-cost, green synthesis of AgNPs using fresh fruit extract of Phyllanthus emblica. The biosynthesized AgNPs was confirmed and characterized by analysis of spectroscopy profile of the UV-visible and Energy dispersive spectrophotometer, Fourier transform infrared, X-ray diffraction pattern, and electron microscopy images examination. UV-visible spectra showed a surface resonance peak of 430 nm corresponding to the formation of AgNPs, and FTIR spectra confirmed the involvement of biological molecules in AgNPs synthesis. In spherical AgNPs, the particle size ranged from 19.8 to 92.8 nm and the average diameter was 39 nm. Synthesized nanoparticles at 20 μg/ml showed remarkable antimicrobial activity in vitro against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial brown stripe, while 62.41% reduction in OD600 value was observed compared to the control. Moreover, the inhibitory efficiency of AgNPs increased with the increase of incubation time. Furthermore, AgNPs not only disturbed biofilm formation and swarming ability but also increased the secretion of effector Hcp in strain RS-2, resulting from damage to the cell membrane, which was substantiated by TEM images and live/dead cell staining result. Overall, this study suggested that AgNPs can be an attractive and eco-friendly candidate to control rice bacterial disease.
Collapse
Affiliation(s)
- Md. Mahidul Islam Masum
- State Key Laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | | | - Khattak Arif Ali
- State Key Laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yang Zhang
- State Key Laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yasmine Abdallah
- State Key Laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ezzeldin Ibrahim
- State Key Laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Wen Qiu
- State Key Laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chenqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Anupama R, Lulu S, Madhusmita R, Vino S, Mukherjee A, Babu S. Insights into the interaction of key biofilm proteins in Pseudomonas aeruginosa PAO1 with TiO 2 nanoparticle: An in silico analysis. J Theor Biol 2019; 462:12-25. [PMID: 30391649 DOI: 10.1016/j.jtbi.2018.10.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 10/27/2022]
Abstract
Pseudomonas aeruginosa is a pathogenic biofilm forming bacteria which exist in wide range of environments such as water, soil and human body. In an earlier study, we used a system biology approach based analysis of biofilm forming genes of P. aeruginosa and their possible role in TiO2 nanoparticle binding. The major protein of P. aeruginosa targeted by TiO2 was found to be KatA, a major catalase required for H2O2 resistance and acute virulence and the direct interacting protein partners of KatA were found to be DnaK, Hfq, RpoA and RpoS. To understand the protein-protein physical interaction characteristic of these key proteins involved in biofilm related processes, homology modeling, docking and molecular dynamic simulation were performed. For all these proteins, physical and chemical properties, amino acid composition, nest and cleft analysis were performed using online tools. The interactions between TiO2NPs-KatA and four protein-protein complexes such as KatA-DnaK, KatA-Hfq, KatA-RpoA and KatA-RpoS were studied. Our results indicate that all four key proteins and TiO2NPs can have stable complexation with KatA. The study has given enough clues to understand the interaction of TiO2NPs with P. aeruginosa biofilm in natural environment. Further investigations could lead to development of TiO2NPs based therapeutic and sanitary interventions to combat this pathogenic bacterium.
Collapse
Affiliation(s)
- Rani Anupama
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sajitha Lulu
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Rout Madhusmita
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sundararajan Vino
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Subramanian Babu
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
14
|
Shah S, Gaikwad S, Nagar S, Kulshrestha S, Vaidya V, Nawani N, Pawar S. Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen Pseudomonas aeruginosa. BIOFOULING 2019; 35:34-49. [PMID: 30727758 DOI: 10.1080/08927014.2018.1563686] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Quorum sensing (QS), the communication signaling network, regulates biofilm formation and several virulence factors in Pseudomonas aeruginosa PAO1, a nosocomial opportunistic pathogen. QS is considered to be a challenging target for compounds antagonistic to virulent factors. Biologically synthesized silver nanoparticles (AgNPs) are reported as anti-QS and anti-biofilm drugs against bacterial infections. The present study reports on the synthesis and characterization of Piper betle (Pb) mediated AgNPs (Pb-AgNPs). The anti-QS activity of Pb-AgNPs against Chromobacterium violaceum and the potential effect of Pb-AgNPs on QS-regulated phenotypes in PAO1 were studied. FTIR analysis exhibited that Pb-AgNPs had been capped by phytochemical constituents of Pb. Eugenol is one of the active phenolic phytochemicals in Pb leaves, therefore molecular docking of eugenol-conjugated AgNPs on QS regulator proteins (LasR, LasI and MvfR) was performed. Eugenol-conjugated AgNPs showed considerable binding interactions with QS-associated proteins. These results provide novel insights into the development of phytochemically conjugated nanoparticles as promising anti-infective candidates.
Collapse
Affiliation(s)
- Saloni Shah
- a Microbial Diversity Research Centre , Dr. D. Y. Patil Biotechnology and Bioinformatics Institute , Dr. D. Y. Patil Vidyapeeth , Pune , India
| | - Swapnil Gaikwad
- a Microbial Diversity Research Centre , Dr. D. Y. Patil Biotechnology and Bioinformatics Institute , Dr. D. Y. Patil Vidyapeeth , Pune , India
| | - Shuchi Nagar
- b Bioinformatics Research Laboratory , Dr. D. Y. Patil Biotechnology and Bioinformatics Institute , Dr. D. Y. Patil Vidyapeeth , Pune , India
| | - Shatavari Kulshrestha
- a Microbial Diversity Research Centre , Dr. D. Y. Patil Biotechnology and Bioinformatics Institute , Dr. D. Y. Patil Vidyapeeth , Pune , India
| | - Viniti Vaidya
- a Microbial Diversity Research Centre , Dr. D. Y. Patil Biotechnology and Bioinformatics Institute , Dr. D. Y. Patil Vidyapeeth , Pune , India
| | - Neelu Nawani
- a Microbial Diversity Research Centre , Dr. D. Y. Patil Biotechnology and Bioinformatics Institute , Dr. D. Y. Patil Vidyapeeth , Pune , India
| | - Sarika Pawar
- a Microbial Diversity Research Centre , Dr. D. Y. Patil Biotechnology and Bioinformatics Institute , Dr. D. Y. Patil Vidyapeeth , Pune , India
| |
Collapse
|
15
|
Anupama R, Sajitha Lulu S, Mukherjee A, Babu S. Cross-regulatory network in Pseudomonas aeruginosa biofilm genes and TiO 2 anatase induced molecular perturbations in key proteins unraveled by a systems biology approach. Gene 2018; 647:289-296. [DOI: 10.1016/j.gene.2018.01.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 12/25/2017] [Accepted: 01/10/2018] [Indexed: 12/22/2022]
|
16
|
Arsenic trioxide: insights into its evolution to an anticancer agent. J Biol Inorg Chem 2018; 23:313-329. [DOI: 10.1007/s00775-018-1537-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/22/2018] [Indexed: 01/01/2023]
|
17
|
Bankier C, Cheong Y, Mahalingam S, Edirisinghe M, Ren G, Cloutman-Green E, Ciric L. A comparison of methods to assess the antimicrobial activity of nanoparticle combinations on bacterial cells. PLoS One 2018; 13:e0192093. [PMID: 29390022 PMCID: PMC5794139 DOI: 10.1371/journal.pone.0192093] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/16/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bacterial cell quantification after exposure to antimicrobial compounds varies widely throughout industry and healthcare. Numerous methods are employed to quantify these antimicrobial effects. With increasing demand for new preventative methods for disease control, we aimed to compare and assess common analytical methods used to determine antimicrobial effects of novel nanoparticle combinations on two different pathogens. METHODS Plate counts of total viable cells, flow cytometry (LIVE/DEAD BacLight viability assay) and qPCR (viability qPCR) were used to assess the antimicrobial activity of engineered nanoparticle combinations (NPCs) on Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria at different concentrations (0.05, 0.10 and 0.25 w/v%). Results were analysed using linear models to assess the effectiveness of different treatments. RESULTS Strong antimicrobial effects of the three NPCs (AMNP0-2) on both pathogens could be quantified using the plate count method and flow cytometry. The plate count method showed a high log reduction (>8-log) for bacteria exposed to high NPC concentrations. We found similar antimicrobial results using the flow cytometry live/dead assay. Viability qPCR analysis of antimicrobial activity could not be quantified due to interference of NPCs with qPCR amplification. CONCLUSION Flow cytometry was determined to be the best method to measure antimicrobial activity of the novel NPCs due to high-throughput, rapid and quantifiable results.
Collapse
Affiliation(s)
- Claire Bankier
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, United Kingdom
| | - Yuen Cheong
- School of Engineering and Technology, University of Hertfordshire, Hatfield, United Kingdom
| | | | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Guogang Ren
- School of Engineering and Technology, University of Hertfordshire, Hatfield, United Kingdom
| | - Elaine Cloutman-Green
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, United Kingdom
- Department of Microbiology, Virology, and Infection Prevention Control, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Lena Ciric
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, United Kingdom
| |
Collapse
|
18
|
Antiquorum sensing activity of silver nanoparticles in P. aeruginosa: an in silico study. In Silico Pharmacol 2017; 5:12. [PMID: 29098138 DOI: 10.1007/s40203-017-0031-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/05/2017] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa an opportunistic pathogen regulates its virulence through Quorum sensing (QS) mechanism comprising of Las and Rhl system. Targeting of QS mechanism could be an ideal strategy to combat infection caused by P. aeruginosa. Silver nanoparticles (AgNPs) have been broadly applied as antimicrobial agents against a number of pathogenic bacterial and fungal strains, but have not been reported as an anti-QS agent. Therefore, the aim of present work was to show the computational analysis for the interaction of AgNPs with the QS system using an In silico approach. In silico studies showed that AgNPs got 'locked' deeply into the active site of respective proteins with their surrounding residues. The molecular docking analysis clearly demonstrated that AgNPs got bound to the catalytic cleft of LasI synthase (Asp73-Ag = 3.1 Å), RhlI synthase (His52-Ag = 2.8 Å), transcriptional receptor protein LasR (Leu159-Ag = 2.3 Å) and RhlR (Trp10-Ag = 3.1 Å and Glu34-Ag = 3.2 Å). The inhibition of LasI/RhlI synthase by AgNPs blocked the biosynthesis of AHLs, thus no AHL produced, no QS occurred. Further, interference with transcriptional regulatory proteins led to the inactivation of LasR/RhlR system that finally blocked the expression of QS-controlled virulence genes. Our findings clearly demonstrate the anti-QS property of AgNPs in P. aeruginosa which could be an alternative approach to the use of traditional antibiotics for the treatment of P. aeruginosa infection.
Collapse
|
19
|
Analysis of Pseudomonas aeruginosa PAO1 Biofilm Protein Profile After Exposure to n-Butanolic Cyclamen coum Extract Alone and in Combination with Ciprofloxacin. Appl Biochem Biotechnol 2017; 182:1444-1457. [PMID: 28138928 DOI: 10.1007/s12010-017-2409-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/11/2017] [Indexed: 01/08/2023]
Abstract
Pseudomonas aeruginosa biofilm-related infections are the major cause of premature death in cystic fibrosis patients. Strategies to induce biofilm dispersal are of interest, because of their potential in preventing biofilm-related infections. Our previous work demonstrated that n-butanolic Cyclamen coum extract with ciprofloxacin could eliminate 1- and 3-day-old P. aeruginosa PAO1 biofilms. To gain new insights into the role of C. coum extract and its synergistic effect with ciprofloxacin in eliminating P. aeruginosa PAO1 biofilms, two-dimensional gel electrophoresis (2-DE) in combination with mass spectrometry-based protein identification were used. Changes in the bacterial protein expression were analyzed when 3-day-old biofilm cells were exposed to the C. coum extract alone and in combination with ciprofloxacin. Proteins involved in alginate biosynthesis, quorum sensing, adaptation/protection, carbohydrate and amino acid metabolism showed a weaker expression in the C. coum extract-ciprofloxacin-treated biofilm cells compared to those in the untreated cells. Interestingly, the proteome of C. coum extract-ciprofloxacin-treated biofilm revealed more resemblance to the planktonic phenotype than to the biofilm phenotype. It appears that saponin extract in combination with ciprofloxacin causes biofilm disruption due to several mechanisms such as motility induction, cell envelope integrity perturbation, stress protein expression reduction, and more importantly, signal transduction perturbation. In conclusion, exposure to a combination of biofilm dispersal such as saponin extract and antimicrobial agents may offer a novel strategy to control preestablished, persistent P. aeruginosa biofilms and biofilm-related infections.
Collapse
|
20
|
Synthesis and Characterization of Sygyzium cumini Nanoparticles for Its Protective Potential in High Glucose-Induced Cardiac Stress: a Green Approach. Appl Biochem Biotechnol 2016; 181:1140-1154. [PMID: 27734287 DOI: 10.1007/s12010-016-2274-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/02/2016] [Indexed: 10/20/2022]
Abstract
There exists a complex and multifactorial relationship between diabetes and cardiovascular disease. Hyperglycemia is an important factor imposing damage (glucose toxicity) on cardiac cell leading to diabetic cardiomyopathy. There are substantial clinical evidences on the adverse effects of conventional therapies in the prevention/treatment of diabetic cardiovascular complications. Currently, green-synthesized nanoparticles have emerged as a safe, efficient, and inexpensive alternative for therapeutic uses. The present study discloses the silver nanoparticle biosynthesizing capability and cardioprotective potential of Syzygium cumini seeds already reported to have antidiabetic properties. Newly generated silver nanoparticles S. cumini MSE silver nanoparticles (SmSNPs) were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), zeta sizer, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Using methanolic extract of S. cumini seeds, an average size of 40-100-nm nanoparticles with 43.02 nm and -19.6 mV zeta potential were synthesized. The crystalline nature of SmSNPs was identified by using XRD. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) assays revealed the antioxidative potential to be 66.87 (±0.7) % and 86.07 (±0.92) % compared to 60.29 (±0.02) % and 85.67 (±1.27) % for S. cumini MSE. In vitro study on glucose-stressed H9C2 cardiac cells showed restoration in cell size, nuclear morphology, and lipid peroxide formation upon treatment of SmSNPs. Our findings concluded that S. cumini MSE SmSNPs significantly suppress the glucose-induced cardiac stress in vitro by maintaining the cellular integrity and reducing the oxidative damages therefore establishing its therapeutic potential in diabetic cardiomyopathy.
Collapse
|
21
|
Molecular Docking, Molecular Dynamics Simulations, Computational Screening to Design Quorum Sensing Inhibitors Targeting LuxP of Vibrio harveyi and Its Biological Evaluation. Appl Biochem Biotechnol 2016; 181:192-218. [DOI: 10.1007/s12010-016-2207-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
|