1
|
Kenfack Ymbe P, Céré C, Delord B, Pecastaings G, Ly I, Thureau A, Rodriguez L, Ivanovic Z, Schmitt V, Lafarge X, Chapel JP, Stines-Chaumeil C. Bifunctional chimeras of myeloperoxidase and glucose oxidase. Antimicrobial, topological and enzymatic properties. J Biotechnol 2025; 399:127-140. [PMID: 39884361 DOI: 10.1016/j.jbiotec.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/08/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Enhancing the local substrate concentration is a crucial strategy in nature for facilitating the proximity of two enzymes. The substrate of the first enzyme is transformed into a by-product that travels to the active site of the second enzyme without external diffusion, then transformed into a product and eventually expelled from the complex. In an effort to optimize the antimicrobial properties of myeloperoxidase from Rhodopirellula baltica (RbMPO), we created a library of fused chimeras between a glucose oxidase (GOx) and RbMPO so that H2O2 could be continuously perfused in the vicinity RbMPO, enabling the production of HOCl or HOSCN, well-known antimicrobial agents. The enzymes were characterized biochemically, enzymatically, and physically using low-resolution techniques such as AFM, SAXS, and cryofracture. SAXS experiments revealed that the chimeras were properly folded and existed in different oligomeric states. The kinetic parameters of the chimeras were determined and used for classification, revealing that all chimeras exhibited varying levels of activity and were microbicidal. The mixture of different oligomeric states of LEGGEAEA displayed both activity and microbicidal properties. AFM was used to visualize the chimeras in different oligomeric states, with their overall shapes ranging from round, oblong, to hooked, depending on the linker used.
Collapse
Affiliation(s)
- Parfait Kenfack Ymbe
- CNRS, University of Bordeaux, CRPP, UMR5031, 115 Avenue Schweitzer, Pessac F-33600, France
| | - Claire Céré
- CNRS, University of Bordeaux, CRPP, UMR5031, 115 Avenue Schweitzer, Pessac F-33600, France
| | - Brigitte Delord
- CNRS, University of Bordeaux, CRPP, UMR5031, 115 Avenue Schweitzer, Pessac F-33600, France
| | - Gilles Pecastaings
- CNRS, University of Bordeaux, CRPP, UMR5031, 115 Avenue Schweitzer, Pessac F-33600, France
| | - Isabelle Ly
- CNRS, University of Bordeaux, CRPP, UMR5031, 115 Avenue Schweitzer, Pessac F-33600, France
| | - Aurélien Thureau
- Synchrotron SOLEIL, HelioBio group, L'Orme des Merisiers, Gif sur-Yvette 91190, France
| | - Laura Rodriguez
- Établissement français du Sang Nouvelle-Aquitaine, site de Bordeaux Pellegrin, place Amélie-Raba-Léon CS 21010, Bordeaux cedex 33075, France; INSERM U1211 « Maladies Rares: Génétique et Métabolisme », Université de Bordeaux, France
| | - Zoran Ivanovic
- Établissement français du Sang Nouvelle-Aquitaine, site de Bordeaux Pellegrin, place Amélie-Raba-Léon CS 21010, Bordeaux cedex 33075, France; INSERM U1211 « Maladies Rares: Génétique et Métabolisme », Université de Bordeaux, France
| | - Véronique Schmitt
- CNRS, University of Bordeaux, CRPP, UMR5031, 115 Avenue Schweitzer, Pessac F-33600, France
| | - Xavier Lafarge
- Établissement français du Sang Nouvelle-Aquitaine, site de Bordeaux Pellegrin, place Amélie-Raba-Léon CS 21010, Bordeaux cedex 33075, France; INSERM U1211 « Maladies Rares: Génétique et Métabolisme », Université de Bordeaux, France
| | - Jean-Paul Chapel
- CNRS, University of Bordeaux, CRPP, UMR5031, 115 Avenue Schweitzer, Pessac F-33600, France
| | - Claire Stines-Chaumeil
- CNRS, University of Bordeaux, CRPP, UMR5031, 115 Avenue Schweitzer, Pessac F-33600, France.
| |
Collapse
|
2
|
Yekta R, Xiong X, Li J, Heater BS, Lee MM, Chan MK. Mechanoresponsive Protein Crystals for NADH Recycling in Multicycle Enzyme Reactions. J Am Chem Soc 2024; 146:18817-18822. [PMID: 38968608 PMCID: PMC11258682 DOI: 10.1021/jacs.4c04725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024]
Abstract
NAD(H)-dependent enzymes play a crucial role in the biosynthesis of pharmaceuticals and fine chemicals, but the limited recyclability of the NAD(H) cofactor hinders its more general application. Here, we report the generation of mechano-responsive PEI-modified Cry3Aa protein crystals and their use for NADH recycling over multiple reaction cycles. For demonstration of its practical utility, a complementary Cry3Aa protein particle containing genetically encoded and co-immobilized formate dehydrogenase for NADH regeneration and leucine dehydrogenase for catalyzing the NADH-dependent l-tert-leucine (l-tert-Leu) biosynthesis has been produced. When combined with the PEI-modified Cry3Aa crystal, the resultant reaction system could be used for the efficient biosynthesis of l-tert-Leu for up to 21 days with a 10.5-fold improvement in the NADH turnover number.
Collapse
Affiliation(s)
- Reza Yekta
- School of Life Sciences & Center
of Novel Biomaterials, The Chinese University
of Hong Kong, Shatin, Hong Kong S.A.R. 999077
| | - Xu Xiong
- School of Life Sciences & Center
of Novel Biomaterials, The Chinese University
of Hong Kong, Shatin, Hong Kong S.A.R. 999077
| | - Jiaxin Li
- School of Life Sciences & Center
of Novel Biomaterials, The Chinese University
of Hong Kong, Shatin, Hong Kong S.A.R. 999077
| | - Bradley S. Heater
- School of Life Sciences & Center
of Novel Biomaterials, The Chinese University
of Hong Kong, Shatin, Hong Kong S.A.R. 999077
| | - Marianne M. Lee
- School of Life Sciences & Center
of Novel Biomaterials, The Chinese University
of Hong Kong, Shatin, Hong Kong S.A.R. 999077
| | - Michael K. Chan
- School of Life Sciences & Center
of Novel Biomaterials, The Chinese University
of Hong Kong, Shatin, Hong Kong S.A.R. 999077
| |
Collapse
|
3
|
Schulz-Mirbach H, Müller A, Wu T, Pfister P, Aslan S, Schada von Borzyskowski L, Erb TJ, Bar-Even A, Lindner SN. On the flexibility of the cellular amination network in E coli. eLife 2022; 11:e77492. [PMID: 35876664 PMCID: PMC9436414 DOI: 10.7554/elife.77492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/22/2022] [Indexed: 12/03/2022] Open
Abstract
Ammonium (NH4+) is essential to generate the nitrogenous building blocks of life. It gets assimilated via the canonical biosynthetic routes to glutamate and is further distributed throughout metabolism via a network of transaminases. To study the flexibility of this network, we constructed an Escherichia coli glutamate auxotrophic strain. This strain allowed us to systematically study which amino acids serve as amine sources. We found that several amino acids complemented the auxotrophy either by producing glutamate via transamination reactions or by their conversion to glutamate. In this network, we identified aspartate transaminase AspC as a major connector between many amino acids and glutamate. Additionally, we extended the transaminase network by the amino acids β-alanine, alanine, glycine, and serine as new amine sources and identified d-amino acid dehydrogenase (DadA) as an intracellular amino acid sink removing substrates from transaminase reactions. Finally, ammonium assimilation routes producing aspartate or leucine were introduced. Our study reveals the high flexibility of the cellular amination network, both in terms of transaminase promiscuity and adaptability to new connections and ammonium entry points.
Collapse
Affiliation(s)
| | - Alexandra Müller
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Tong Wu
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Pascal Pfister
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Selçuk Aslan
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Lennart Schada von Borzyskowski
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Institute of Biology Leiden, Leiden UniversityLeidenNetherlands
| | - Tobias J Erb
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Department of Biochemistry, Charité – Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
4
|
Chen R, Liao YT, Gao TT, Zhang YM, Lu LH, Wang CH. Novel Salt-Tolerant Leucine Dehydrogenase from Marine Pseudoalteromonas rubra DSM 6842. Mol Biotechnol 2022; 64:1270-1278. [PMID: 35578070 DOI: 10.1007/s12033-022-00505-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
This study reported the cloning, expression, and characterization of a new salt-tolerant leucine dehydrogenase (PrLeuDH) from Pseudoalteromonas rubra DSM 6842. A codon-optimized 1038 bp gene encoding PrLeuDH was successfully expressed on pET-22b( +) in E. coli BL21(DE3). The purified recombinant PrLeuDH showed a single band of about 38.7 kDa on SDS-PAGE. It exhibited the maximum activity at 40 °C and pH 10.5, while kept high activities in the range of 25-45 °C and pH 9.5-12. The Km value and turnover number kcat for leucine of PrLeuDH were 2.23 ± 0.12 mM and 35.39 ± 0.05 s-1, respectively, resulting in a catalytic efficiency kcat/Km of 15.87 s-1/mM. Importantly, PrLeuDH remained 92.1 ± 2.67% active in the presence of 4.0 M NaCl. The study provides the first in-depth understanding of LeuDH from marine Pseudoalteromonas rubra, meanwhile the unique properties of high activity at low temperature and high salt tolerance make it a promising biocatalyst for the synthesis of non-protein amino acids and α-ketoacids under special conditions in pharmaceutical industry.
Collapse
Affiliation(s)
- Rui Chen
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue East Road, Nanning, 530004, People's Republic of China
| | - Yu-Ting Liao
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue East Road, Nanning, 530004, People's Republic of China
| | - Tian-Tian Gao
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue East Road, Nanning, 530004, People's Republic of China
| | - Yan-Mei Zhang
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue East Road, Nanning, 530004, People's Republic of China
| | - Liang-Hua Lu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue East Road, Nanning, 530004, People's Republic of China
| | - Cheng-Hua Wang
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue East Road, Nanning, 530004, People's Republic of China.
| |
Collapse
|
5
|
Zeballos N, Diamanti E, Benítez-Mateos AI, Schmidt-Dannert C, López-Gallego F. Solid-Phase Assembly of Multienzyme Systems into Artificial Cellulosomes. Bioconjug Chem 2021; 32:1966-1972. [PMID: 34410702 DOI: 10.1021/acs.bioconjchem.1c00327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We herein describe a bioinspired solid-phase assembly of a multienzyme system scaffolded on an artificial cellulosome. An alcohol dehydrogenase and an ω-transaminase were fused to cohesin and dockerin domains to drive their sequential and ordered coimmobilization on agarose porous microbeads. The resulting immobilized scaffolded enzymatic cellulosome was characterized through quartz crystal microbalance with dissipation and confocal laser scanning microscopy to demonstrate that both enzymes interact with each other and physically colocalize within the microbeads. Finally, the assembled multifunctional heterogeneous biocatalyst was tested for the one-pot conversion of alcohols into amines. By using the physically colocalized enzymatic system confined into porous microbeads, the yield of the corresponding amine was 1.3 and 10 times higher than the spatially segregated immobilized system and the free enzymes, respectively. This work establishes the basis of a new concept to organize multienzyme systems at the nanoscale within solid and porous immobilization carriers.
Collapse
Affiliation(s)
- Nicoll Zeballos
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia San Sebastián, Spain
| | - Eleftheria Diamanti
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia San Sebastián, Spain
| | - Ana I Benítez-Mateos
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia San Sebastián, Spain
| | - Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
6
|
Zhou F, Mu X, Nie Y, Xu Y. Enhanced catalytic efficiency and coenzyme affinity of leucine dehydrogenase by comprehensive screening strategy for L-tert-leucine synthesis. Appl Microbiol Biotechnol 2021; 105:3625-3634. [PMID: 33929595 DOI: 10.1007/s00253-021-11323-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/25/2021] [Accepted: 04/26/2021] [Indexed: 11/25/2022]
Abstract
L-tert-leucine (L-Tle) is widely used as vital chiral intermediate for pharmaceuticals and as chiral auxiliarie for organocatalysis. L-Tle is generally prepared via the asymmetric reduction of trimethylpyruvate (TMP) catalyzed by NAD+-dependent leucine dehydrogenase (LeuDH). To improve the catalytic efficiency and coenzyme affinity of LeuDH from Bacillus cereus, mutation libraries constructed by error-prone PCR and iterative saturation mutation were screened by two kinds of high-throughput methods. Compared with the wild type, the affinity of the selected mutant E24V/E116V for TMP and NADH increased by 7.7- and 2.8-fold, respectively. And the kcat/Km of E24V/E116V on TMP was 5.4-fold higher than that of the wild type. A coupled reaction comprising LeuDH with glucose dehydrogenase of Bacillus amyloliquefaciens resulted in substrate inhibition at high TMP concentrations (0.5 M), which was overcome by batch-feeding of the TMP substrate. The total turnover number and specific space-time conversion of 0.57 M substrate increased to 11,400 and 22.8 mmol·h-1·L-1·g-1, respectively. KEY POINTS: • The constructed new high-throughput screening strategy takes into account the two indicators of catalytic efficiency and coenzyme affinity. • A more efficient leucine dehydrogenase (LeuDH) mutant (E24V/E116V) was identified. • E24V/E116V has potential for the industrial synthesis of L-tert-leucine.
Collapse
Affiliation(s)
- Feng Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqing Mu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China. .,Suqian Industrial Technology Research Institute of Jiangnan University, Suqian, 223814, China.
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China. .,Suqian Industrial Technology Research Institute of Jiangnan University, Suqian, 223814, China.
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
7
|
Jiang W, Zeng W. Construction of a Self-Purification and Self-Assembly Coenzyme Regeneration System for the Synthesis of Chiral Drug Intermediates. ACS OMEGA 2021; 6:1911-1916. [PMID: 33521431 PMCID: PMC7841785 DOI: 10.1021/acsomega.0c04668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
As one of the important research contents of synthetic biology, the construction of a regulatory system exhibits great potential in the synthesis of high value-added chemicals such as drug intermediates. In this work, a self-assembly coenzyme regeneration system, leucine dehydrogenase (LeuDH)-formate dehydrogenase (FDH) protein co-assembly system, was constructed by using the polypeptide, SpyTag/SpyCatcher. Then, it was demonstrated that the nonchromatographic inverse transition cycling purification method could purify intracellular coupling proteins and extracellular coupling proteins well. The conversion rate of the pure LeuDH-FDH protein assembly (FR-LR) was shown to be 1.6-fold and 32.3-fold higher than that of the free LeuDH-FDH system (LeuDH + FDH) and free LeuDH, respectively. This work has paved a new way of constructing a protein self-assembly system and engineering self-purification coenzyme regeneration system for the synthesis of chiral amino acids or chiral α-hydroxy acids.
Collapse
Affiliation(s)
- Wei Jiang
- ; . Tel.: +86-05926162305. Fax: +86-05926162305
| | | |
Collapse
|
8
|
Liao L, Zhang Y, Wang Y, Fu Y, Zhang A, Qiu R, Yang S, Fang B. Construction and characterization of a novel glucose dehydrogenase-leucine dehydrogenase fusion enzyme for the biosynthesis of L-tert-leucine. Microb Cell Fact 2021; 20:3. [PMID: 33407464 PMCID: PMC7788806 DOI: 10.1186/s12934-020-01501-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/23/2020] [Indexed: 11/24/2022] Open
Abstract
Background Biosynthesis of l-tert-leucine (l-tle), a significant pharmaceutical intermediate, by a cofactor regeneration system friendly and efficiently is a worthful goal all the time. The cofactor regeneration system of leucine dehydrogenase (LeuDH) and glucose dehydrogenase (GDH) has showed great coupling catalytic efficiency in the synthesis of l-tle, however the multi-enzyme complex of GDH and LeuDH has never been constructed successfully. Results In this work, a novel fusion enzyme (GDH–R3–LeuDH) for the efficient biosynthesis of l-tle was constructed by the fusion of LeuDH and GDH mediated with a rigid peptide linker. Compared with the free enzymes, both the environmental tolerance and thermal stability of GDH–R3–LeuDH had a great improved since the fusion structure. The fusion structure also accelerated the cofactor regeneration rate and maintained the enzyme activity, so the productivity and yield of l-tle by GDH–R3–LeuDH was all enhanced by twofold. Finally, the space–time yield of l-tle catalyzing by GDH–R3–LeuDH whole cells could achieve 2136 g/L/day in a 200 mL scale system under the optimal catalysis conditions (pH 9.0, 30 °C, 0.4 mM of NAD+ and 500 mM of a substrate including trimethylpyruvic acid and glucose). Conclusions It is the first report about the fusion of GDH and LeuDH as the multi-enzyme complex to synthesize l-tle and reach the highest space–time yield up to now. These results demonstrated the great potential of the GDH–R3–LeuDH fusion enzyme for the efficient biosynthesis of l-tle.
Collapse
Affiliation(s)
- Langxing Liao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yonghui Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.,College of Food and Biological Engineering, Jimei University, Xiamen, People's Republic of China
| | - Yali Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yousi Fu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Aihui Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Ruodian Qiu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Shuhao Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Baishan Fang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China. .,The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, Fujian, People's Republic of China.
| |
Collapse
|
9
|
Slagman S, Fessner WD. Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chem Soc Rev 2021; 50:1968-2009. [DOI: 10.1039/d0cs00763c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An assessment of biocatalytic strategies for the synthesis of anti-viral agents, offering guidelines for the development of sustainable production methods for a future COVID-19 remedy.
Collapse
Affiliation(s)
- Sjoerd Slagman
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| |
Collapse
|
10
|
Duman ZE, Duraksoy BB, Aktaş F, Woodley JM, Binay B. High-level heterologous expression of active Chaetomium thermophilum FDH in Pichia pastoris. Enzyme Microb Technol 2020; 137:109552. [PMID: 32423672 DOI: 10.1016/j.enzmictec.2020.109552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/14/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
Nowadays, the use of formate dehydrogenase (FDH, EC 1.17.1.9) is well established as a means of NADH regeneration from NAD+ via the coupled conversion of formate into carbon dioxide. Recent studies have been reported that specifically Chaetomium thermophilum FDH (CtFDH) is the most efficient FDH catalyzing this reaction in reverse (i.e. using CO2 as a substrate to produce formate, and thereby regenerating NAD+). However, to date the production of active CtFDH at high protein expression levels has received relatively little attention. In this study, we have tested the effect of batch and high cell density fermentation (HCDF) strategies in a small stirred fermenter, as well as the effect of supplementing the medium with casamino acids, on the expressed level of secreted CtFDH using P. pastoris. We have established that the amount of expressed CtFDH was indeed enhanced via a HCDF strategy and that extracellular protease activity was eliminated via the addition of casamino acids into the fermentation medium. On this basis, secreted CtFDH in an active form can be easily separated from the fermentation and can be used for subsequent biotechnological applications.
Collapse
Affiliation(s)
- Zeynep Efsun Duman
- Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey; Enzyme Consultancy and Identification Center (ETDAM), Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Bedri Burak Duraksoy
- Department of Chemistry, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey; Enzyme Consultancy and Identification Center (ETDAM), Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Fatih Aktaş
- Department of Environmental Engineering, Düzce University, 81620, Düzce, Turkey
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark.
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey; Enzyme Consultancy and Identification Center (ETDAM), Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
11
|
Nanofibrillated Cellulose-Enzyme Assemblies for Enhanced Biotransformations with In Situ Cofactor Regeneration. Appl Biochem Biotechnol 2020; 191:1369-1383. [PMID: 32100231 DOI: 10.1007/s12010-020-03263-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/13/2020] [Indexed: 10/24/2022]
Abstract
We report herein the use of nanofibrillated cellulose (NFC) for development of enzyme assemblies in an oriented manner for biotransformation with in situ cofactor regeneration. This is achieved by developing fusion protein enzymes with cellulose-specific binding domains. Specifically, lactate dehydrogenase and NADH oxidase were fused with a cellulose binding domain, which enabled both enzyme recovery and assembling in essentially one single step by using NFC. Results showed that the binding capacity of the enzymes was as high as 0.9 μmol-enzyme/g-NFC. Compared to native parent free enzymes, NFC-enzyme assemblies improved the catalytic efficiency of the coupled reaction system by over 100%. The lifetime of enzymes was also improved by as high as 27 folds. The work demonstrates promising potential of using biocompatible and environmentally benign bio-based nanomaterials for construction of efficient catalysts for intensified bioprocessing and biotransformation applications.
Collapse
|
12
|
Yildirim D, Alagöz D, Toprak A, Tükel S, Fernandez-Lafuente R. Tuning dimeric formate dehydrogenases reduction/oxidation activities by immobilization. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Jiang W, Yang R, Lin P, Hong W, Fang B. Bioinspired genetic engineering of supramolecular assembled formate dehydrogenase with enhanced biocatalysis activities. J Biotechnol 2019; 292:50-56. [PMID: 30690097 DOI: 10.1016/j.jbiotec.2018.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/22/2018] [Accepted: 12/09/2018] [Indexed: 11/25/2022]
Abstract
A bioinspired strategy for the synthesis of supramolecular and biocatalytical materials was developed base on protein-protein supramolecular interaction and genetic engineering. Formate dehydrogenase (FDH) and its functional fragments were separately fused to form a multi-function domain. The fusion proteins and functional fragments self-assembled into the expanded and controllable supramolecular interaction networks. Morphology characterization by scanning-electron microscopy showed that the assembled functional fragments and fusion proteins formed multi-dimensional (3D) and two-dimensional (2D) layer-like structures. Moreover, the oligomeric biocatalysts exhibited higher structural stability and NAD(H) recycling efficiency than the unassembled structures when they were applied to a co-enzyme regeneration system. These results suggest that the bioinspired strategy provides a promising approach for the fabrication of supramolecular FDH materials via genetic engineering and self-assembly. The significant improvement on the biocatalytical activity reveals the essential role of supramolecular interface design in their biocatalysis applications.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China; Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ruonan Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, China
| | - Peng Lin
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, China
| | - Wenjing Hong
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, China.
| | - Baishan Fang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, China; Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
14
|
Meng D, Wu R, Wang J, Zhu Z, You C. Acceleration of cellodextrin phosphorolysis for bioelectricity generation from cellulosic biomass by integrating a synthetic two-enzyme complex into an in vitro synthetic enzymatic biosystem. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:267. [PMID: 31737096 PMCID: PMC6849236 DOI: 10.1186/s13068-019-1607-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/01/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND Cellulosic biomass, the earth's most abundant renewable resource, can be used as substrates for biomanufacturing biofuels or biochemicals via in vitro synthetic enzymatic biosystems in which the first step is the enzymatic phosphorolysis of cellodextrin to glucose 1-phosphate (G1P) by cellodextrin phosphorylase (CDP). However, almost all the CDPs prefer cellodextrin synthesis to phosphorolysis, resulting in the low reaction rate of cellodextrin phosphorolysis for biomanufacturing. RESULTS To increase the reaction rate of cellodextrin phosphorolysis, synthetic enzyme complexes containing CDP and phosphoglucomutase (PGM) were constructed to convert G1P to glucose 6-phosphate (G6P) rapidly, which is an important intermediate for biomanufacturing. Four self-assembled synthetic enzyme complexes were constructed with different spatial organizations based on the high-affinity and high-specific interaction between cohesins and dockerins from natural cellulosomes. Thus, the CDP-PGM enzyme complex with the highest enhancement of initial reaction rate was integrated into an in vitro synthetic enzymatic biosystem for generating bioelectricity from cellodextrin. The in vitro biosystem containing the best CDP-PGM enzyme complex exhibited a much higher current density (3.35-fold) and power density (2.14-fold) than its counterpart biosystem containing free CDP and PGM mixture. CONCLUSIONS Hereby, we first reported bioelectricity generation from cellulosic biomass via in vitro synthetic enzymatic biosystems. This work provided a strategy of how to link non-energetically favorable reaction (cellodextrin phosphorolysis) and energetically favorable reaction (G1P to G6P) together to circumvent unfavorable reaction equilibrium and shed light on improving the reaction efficiency of in vitro synthetic enzymatic biosystems through the construction of synthetic enzyme complexes.
Collapse
Affiliation(s)
- Dongdong Meng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308 People’s Republic of China
| | - Ranran Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308 People’s Republic of China
| | - Juan Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308 People’s Republic of China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308 People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049 People’s Republic of China
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308 People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049 People’s Republic of China
| |
Collapse
|
15
|
Han L, Liang B. New approaches to NAD(P)H regeneration in the biosynthesis systems. World J Microbiol Biotechnol 2018; 34:141. [PMID: 30203299 DOI: 10.1007/s11274-018-2530-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022]
Abstract
Nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), as two kinds of well-known cofactor, are widely used in the most of enzymatic redox reactions, playing an important role in industrial catalysis. In general, supply of NAD(P)H is a major challenged factor in redox fermentation systems due to its high cost and low stability, which have stimulated the development of NADH regeneration systems in recent years. Until now, a series of NAD(P)H regeneration systems have been developed. This review focuses primarily on new approaches of NAD(P)H cofactor regeneration in the biosynthesis systems, such as single cell in vivo NADH regeneration system, double cell coupling NADH regeneration system, in vitro enzyme-coupled NADH regeneration system, microbial cell surface display NADH regeneration system. Finally, the prospect and tendency of NADH regeneration are discussed.
Collapse
Affiliation(s)
- Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, China.
| | - Bo Liang
- College of Life Sciences, Energy-Rich Compounds Production by Photosynthesis Carbon Fixation Research Center, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, China.
| |
Collapse
|
16
|
Caparco AA, Bommarius AS, Champion JA. Effect of peptide linker length and composition on immobilization and catalysis of leucine zipper‐enzyme fusion proteins. AIChE J 2018. [DOI: 10.1002/aic.16150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Adam A. Caparco
- School of Chemical and Biomolecular Engineering, Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlanta GA 30332
| | - Andreas S. Bommarius
- School of Chemical and Biomolecular Engineering, Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlanta GA 30332
| | - Julie A. Champion
- School of Chemical and Biomolecular Engineering, Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlanta GA 30332
| |
Collapse
|
17
|
Heterologous production of extreme alkaline thermostable NAD + -dependent formate dehydrogenase with wide-range pH activity from Myceliophthora thermophila. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
da Silva ES, Gómez-Vallejo V, Llop J, López-Gallego F. Structural, kinetic and operational characterization of an immobilized l -aminoacid dehydrogenase. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
|