1
|
Mbaye B, Wasfy RM, Alou MT, Borentain P, Gerolami R, Dufour JC, Million M. A catalog of ethanol-producing microbes in humans. Future Microbiol 2024; 19:697-714. [PMID: 38700288 PMCID: PMC11259083 DOI: 10.2217/fmb-2023-0250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/13/2024] [Indexed: 05/05/2024] Open
Abstract
Aim: Endogenous ethanol production emerges as a mechanism of nonalcoholic steatohepatitis, obesity, diabetes and auto-brewery syndrome. Methods: To identify ethanol-producing microbes in humans, we used the NCBI taxonomy browser and the PubMed database with an automatic query and manual verification. Results: 85 ethanol-producing microbes in human were identified. Saccharomyces cerevisiae, Candida and Pichia were the most represented fungi. Enterobacteriaceae was the most represented bacterial family with mainly Escherichia coli and Klebsiella pneumoniae. Species of the Lachnospiraceae and Clostridiaceae family, of the Lactobacillales order and of the Bifidobacterium genus were also identified. Conclusion: This catalog will help the study of ethanol-producing microbes in human in the pathophysiology, diagnosis, prevention and management of human diseases associated with endogenous ethanol production.
Collapse
Affiliation(s)
- Babacar Mbaye
- Aix Marseille Université, AP-HM, MEPHI, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Reham Magdy Wasfy
- Aix Marseille Université, AP-HM, MEPHI, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Maryam Tidjani Alou
- Aix Marseille Université, AP-HM, MEPHI, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Patrick Borentain
- Department of Hepatology, La Timone University Hospital, AP-HM, Marseille, France
| | - Rene Gerolami
- Aix Marseille Université, AP-HM, MEPHI, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Department of Hepatology, La Timone University Hospital, AP-HM, Marseille, France
| | - Jean-Charles Dufour
- INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, ISSPAM, Aix Marseille University, 13385 Marseille, France
- APHM, Hôpital de la Timone, Service Biostatistique et Technologies de l'Information et de la Communication, 13385 Marseille, France
| | - Matthieu Million
- Aix Marseille Université, AP-HM, MEPHI, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
2
|
Nurani W, Anwar Y, Batubara I, Arung ET, Fatriasari W. Kappaphycus alvarezii as a renewable source of kappa-carrageenan and other cosmetic ingredients. Int J Biol Macromol 2024; 260:129458. [PMID: 38232871 DOI: 10.1016/j.ijbiomac.2024.129458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Kappa-carrageenan is one of the most traded marine-derived hydrocolloids used in the food-and-beverage, pharmaceuticals, and personal care/cosmetics industries. K. alvarezii (previously known as Kappaphycus alvarezii) is arguably the most important natural producer based on annual production size and near-homogeneity of the product (i.e., primarily being the kappa-type). The anticipated expansion of the kappa-carrageenan market in the coming years could easily generate >100,000 MT of residual K. alvarezii biomass per year, which, if left untreated, can severely affect the environment and economy of the surrounding area. Among several possible valorization routes, turning the biomass residue into anti-photoaging cosmetic ingredients could potentially be the most sustainable one. Not only optimizing the profit (thus better ensuring economic sustainability) relative to the biofuels- and animal feed-routes, the action could also promote environmental sustainability. It could reduce the dependency of the current cosmetic industry on both petrochemicals and terrestrial plant-derived bioactive compounds. Note how, in contrast to terrestrial agriculture, industrial cultivation of seaweeds does not require arable land, freshwater, fertilizers, and pesticides. The valorization mode could also facilitate the sequestration of more greenhouse gas CO2 as daily-used chemicals, since the aerial productivity of seaweeds is much higher than that of terrestrial plants. This review first summarizes any scientific evidence that K. alvarezii extracts possess anti-photoaging properties. Next, realizing that conventional extraction methods may prevent the use of such extracts in cosmetic formulations, this review discusses the feasibility of obtaining various K. alvarezii compounds using green methods. Lastly, a perspective on several potential challenges to the proposed valorization scheme, as well as the potential solutions, is offered.
Collapse
Affiliation(s)
- Wasti Nurani
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Kawasan KST Soekarno, Jl. Raya Bogor KM 46, Cibinong 16911, Indonesia
| | - Yelfi Anwar
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Kawasan KST Soekarno, Jl. Raya Bogor KM 46, Cibinong 16911, Indonesia
| | - Irmanida Batubara
- Department of Chemistry, IPB University, Bogor, Indonesia; Tropical Biopharmaca Research Center (TropBRC), Institute of Research and Community Services, IPB University, Bogor, Indonesia
| | - Enos Tangke Arung
- Faculty of Forestry, Universitas Mulawarman, Samarinda, East Kalimantan, Indonesia; Research Collaboration Center for Biomass-Based Nano Cosmetic, in collaboration with National Research and Innovation Agency (BRIN), Samarinda, East Kalimantan, Indonesia
| | - Widya Fatriasari
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Kawasan KST Soekarno, Jl. Raya Bogor KM 46, Cibinong 16911, Indonesia; Research Collaboration Center for Biomass-Based Nano Cosmetic, in collaboration with National Research and Innovation Agency (BRIN), Samarinda, East Kalimantan, Indonesia; Research Collaboration Center for Marine Biomaterials, Jl. Ir. Sukarno, Jatinangor, Sumedang, Indonesia.
| |
Collapse
|
3
|
Seo K, Shu W, Rückert-Reed C, Gerlinger P, Erb TJ, Kalinowski J, Wittmann C. From waste to health-supporting molecules: biosynthesis of natural products from lignin-, plastic- and seaweed-based monomers using metabolically engineered Streptomyces lividans. Microb Cell Fact 2023; 22:262. [PMID: 38114944 PMCID: PMC10731712 DOI: 10.1186/s12934-023-02266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Transforming waste and nonfood materials into bulk biofuels and chemicals represents a major stride in creating a sustainable bioindustry to optimize the use of resources while reducing environmental footprint. However, despite these advancements, the production of high-value natural products often continues to depend on the use of first-generation substrates, underscoring the intricate processes and specific requirements of their biosyntheses. This is also true for Streptomyces lividans, a renowned host organism celebrated for its capacity to produce a wide array of natural products, which is attributed to its genetic versatility and potent secondary metabolic activity. Given this context, it becomes imperative to assess and optimize this microorganism for the synthesis of natural products specifically from waste and nonfood substrates. RESULTS We metabolically engineered S. lividans to heterologously produce the ribosomally synthesized and posttranslationally modified peptide bottromycin, as well as the polyketide pamamycin. The modified strains successfully produced these compounds using waste and nonfood model substrates such as protocatechuate (derived from lignin), 4-hydroxybenzoate (sourced from plastic waste), and mannitol (from seaweed). Comprehensive transcriptomic and metabolomic analyses offered insights into how these substrates influenced the cellular metabolism of S. lividans. In terms of production efficiency, S. lividans showed remarkable tolerance, especially in a fed-batch process using a mineral medium containing the toxic aromatic 4-hydroxybenzoate, which led to enhanced and highly selective bottromycin production. Additionally, the strain generated a unique spectrum of pamamycins when cultured in mannitol-rich seaweed extract with no additional nutrients. CONCLUSION Our study showcases the successful production of high-value natural products based on the use of varied waste and nonfood raw materials, circumventing the reliance on costly, food-competing resources. S. lividans exhibited remarkable adaptability and resilience when grown on these diverse substrates. When cultured on aromatic compounds, it displayed a distinct array of intracellular CoA esters, presenting promising avenues for polyketide production. Future research could be focused on enhancing S. lividans substrate utilization pathways to process the intricate mixtures commonly found in waste and nonfood sources more efficiently.
Collapse
Affiliation(s)
- Kyoyoung Seo
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Wei Shu
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | | | | | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
4
|
Osman MEH, Abo-Shady AM, Elshobary ME, Abd El-Ghafar MO, Hanelt D, Abomohra A. Exploring the Prospects of Fermenting/Co-Fermenting Marine Biomass for Enhanced Bioethanol Production. FERMENTATION-BASEL 2023; 9:934. [DOI: 10.3390/fermentation9110934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
With the rising demands for renewable fuels, there is growing interest in utilizing abundant and sustainable non-edible biomass as a feedstock for bioethanol production. Macroalgal biomass contains a high content of carbohydrates in the form of special polysaccharides like alginate, agar, and carrageenan that can be converted to fermentable sugars. In addition, using seagrass as a feedstock for bioethanol production can provide a sustainable and renewable energy source while addressing environmental concerns. It is a resource-rich plant that offers several advantages for bioethanol production, including its high cellulose content, rapid growth rates, and abundance in coastal regions. To reduce sugar content and support efficient microbial fermentation, co-fermentation of macroalgae with seagrass (marine biomass) can provide complementary sugars and nutrients to improve process yields and economics. This review comprehensively covers the current status and future potential of fermenting macroalgal biomass and seagrass, as well as possible combinations for maximizing bioethanol production from non-edible energy crops. An overview is provided on the biochemical composition of macroalgae and seagrass, pretreatment methods, hydrolysis, and fermentation processes. Key technical challenges and strategies to achieve balanced co-substrate fermentation are discussed. The feasibility of consolidated bioprocessing to directly convert mixed feedstocks to ethanol is also evaluated. Based on current research, macroalgae-seagrass co-fermentation shows good potential to improve the bioethanol yields, lower the cost, and enable more optimal utilization of diverse marine biomass resources compared to individual substrates.
Collapse
Affiliation(s)
- Mohamed E. H. Osman
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Atef M. Abo-Shady
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mostafa E. Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | | | - Dieter Hanelt
- Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609 Hamburg, Germany
| | - Abdelfatah Abomohra
- Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609 Hamburg, Germany
| |
Collapse
|
5
|
Zhang K, Hong Y, Chen C, Wu YR. Unraveling the unique butyrate re-assimilation mechanism of Clostridium sp. strain WK and the application of butanol production from red seaweed Gelidium amansii through a distinct acidolytic pretreatment. BIORESOURCE TECHNOLOGY 2021; 342:125939. [PMID: 34555752 DOI: 10.1016/j.biortech.2021.125939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Exploration of the algae-derived biobutanol synthesis has become one of the hotspots due to its highly cost-effective and environment-friendly features. In this study, a solventogenic strain Clostridium sp. strain WK produced 13.96 g/L butanol with a maximal yield of 0.41 g/g from glucose in the presence of 24 g/L butyrate. Transcriptional analysis indicated that the acid re-assimilation of this strain was predominantly regulated by genes buk-ptb rather than ctfAB, explaining its special phenotypes including high butyrate tolerance and the pH-independent fermentation. In addition, a butyric acid-mediated hydrolytic system was established for the first time to release a maximal yield of 0.35 g/g reducing sugars from the red algal biomass (Gelidium amansii). Moreover, 4.48 g/L of butanol was finally achieved with a significant enhancement by 29.9 folds. This work reveals an unconventional metabolic pathway for butanol synthesis in strain WK, and demonstrates the feasibility to develop renewable biofuels from marine resources.
Collapse
Affiliation(s)
- Kan Zhang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Ying Hong
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Chaoyang Chen
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Yi-Rui Wu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China; Beijing Tidetron Bioworks Company, Beijing 100190, China.
| |
Collapse
|
6
|
Prasanth SM, Kumar PS, Harish S, Rishikesh M, Nanda S, Vo DVN. Application of biomass derived products in mid-size automotive industries: A review. CHEMOSPHERE 2021; 280:130723. [PMID: 34162084 DOI: 10.1016/j.chemosphere.2021.130723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 06/13/2023]
Abstract
The automotive industry is directly affected by the shortage of fossil fuels and the excessive pollution resulting from crude oil-based fuels has many adverse effects on the environment. The search for a greener and sustainable source of materials and fuels to power automobiles has ultimately led to the usage of biomass and biobased sources as the main precursor due to its graft availability and renewability. Biobased fuels developed have been shown to easily blend in with the existing automobile engines and to provide sustainable performance. Similarly, the usage of various biobased polymers, plastics, and composite materials as the structural materials for the construction of automobiles instead of crude oil sources have shown to be invaluable. The powering of automobiles with electricity is the future of the transportation industry to address the greenhouse gas emissions caused by fossil fuels. Hence, biobased lithium-ion batteries and supercapacitors have started to enter the mid-sized automotive industry. However, extensive commercialization of biobased products application in the automotive sector is underdeveloped. Hence it is customary to assess the various drawbacks of using biobased materials and identify the correct pathway for new research and development in this field. Therefore, this review covers various applications of biobased products in the automotive industries and mentions the active researches going on in this field to replace petroleum and crude oil-based sources with biobased sources.
Collapse
Affiliation(s)
- S M Prasanth
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India.
| | - S Harish
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - M Rishikesh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - Sonil Nanda
- Department of Chemical and Biological Engineering University of Saskatchewan, Saskatchewan, S7N 5A9, Canada
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
7
|
Zhang K, Zhang F, Wu YR. Emerging technologies for conversion of sustainable algal biomass into value-added products: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147024. [PMID: 33895504 DOI: 10.1016/j.scitotenv.2021.147024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Concerns regarding high energy demand and gradual depletion of fossil fuels have attracted the desire of seeking renewable and sustainable alternatives. Similar to but better than the first- and second-generation biomass, algae derived third-generation biorefinery aims to generate value-added products by microbial cell factories and has a great potential due to its abundant, carbohydrate-rich and lignin-lacking properties. However, it is crucial to establish an efficient process with higher competitiveness over the current petroleum industry to effectively utilize algal resources. In this review, we summarize the recent technological advances in maximizing the bioavailability of different algal resources. Following an overview of approaches to enhancing the hydrolytic efficiency, we review prominent opportunities involved in microbial conversion into various value-added products including alcohols, organic acids, biogas and other potential industrial products, and also provide key challenges and trends for future insights into developing biorefineries of marine biomass.
Collapse
Affiliation(s)
- Kan Zhang
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China
| | - Feifei Zhang
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China
| | - Yi-Rui Wu
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, Guangdong, China; Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
8
|
Chupaza MH, Park YR, Kim SH, Yang JW, Jeong GT, Kim SK. Bioethanol Production from Azolla filiculoides by Saccharomyces cerevisiae, Pichia stipitis, Candida lusitaniae, and Kluyveromyces marxianus. Appl Biochem Biotechnol 2020; 193:502-514. [PMID: 33026615 DOI: 10.1007/s12010-020-03437-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
Ethanol was produced by separate hydrolysis and fermentation using Azolla filiculoides as a biomass. Thermal acid hydrolysis and enzymatic saccharification were used as pretreatment methods to produce monosaccharides from Azolla. The optimal content for thermal acid hydrolysis of 14% (w/v) Azolla weed slurry produced 16.7-g/L monosaccharides by using 200 mM H2SO4 at 121 °C for 60 min. Enzymatic saccharification using 16 U/mL Viscozyme produced 61.6 g/L monosaccharide at 48 h. Ethanol productions with ethanol yield coefficients from Azolla weed hydrolysate using Kluyveromyces marxianus, Candida lusitaniae Saccharomyces cerevisiae, and Pichia stipitis were 26.8 g/L (YEtOH = 0.43), 23.2 g/L (YEtOH = 0.37), 18.2 g/L (YEtOH = 0.29), and 13.7 g/L (YEtOH = 0.22), respectively. Saccharomyces cerevisiae produces the lowest yield as it utilized only glucose. Bioethanol from Azolla weed hydrolysate can be successfully produced by using Kluyveromyces marxianus because it consumed the mixture of glucose and xylose completely within 60 h.
Collapse
Affiliation(s)
- Mariam H Chupaza
- School of Marine Fisheries, and Life Science (Major in Biotechnology), Pukyong National University, 48513, Busan, Republic of Korea.,KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea.,Department of Fishing and Fish Processing, Fisheries Education and Training Agency, P.O. Box 83, Bagamoyo, Costal Region, Tanzania
| | - Yu-Rim Park
- School of Marine Fisheries, and Life Science (Major in Biotechnology), Pukyong National University, 48513, Busan, Republic of Korea
| | - So Hee Kim
- School of Marine Fisheries, and Life Science (Major in Biotechnology), Pukyong National University, 48513, Busan, Republic of Korea
| | - Ji Won Yang
- School of Marine Fisheries, and Life Science (Major in Biotechnology), Pukyong National University, 48513, Busan, Republic of Korea
| | - Gwi-Teak Jeong
- School of Marine Fisheries, and Life Science (Major in Biotechnology), Pukyong National University, 48513, Busan, Republic of Korea
| | - Sung-Koo Kim
- School of Marine Fisheries, and Life Science (Major in Biotechnology), Pukyong National University, 48513, Busan, Republic of Korea.
| |
Collapse
|
9
|
Cascaded valorization of seaweed using microbial cell factories. Curr Opin Biotechnol 2020; 65:102-113. [DOI: 10.1016/j.copbio.2020.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/17/2022]
|
10
|
Park Y, Sunwoo IY, Yang J, Jeong GT, Kim SK. Comparison of Ethanol Yield Coefficients Using Saccharomyces cerevisiae, Candida lusitaniae, and Kluyveromyces marxianus Adapted to High Concentrations of Galactose with Gracilaria verrucosa as Substrate. J Microbiol Biotechnol 2020; 30:930-936. [PMID: 32238769 PMCID: PMC9728270 DOI: 10.4014/jmb.2002.02014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/15/2020] [Indexed: 12/15/2022]
Abstract
The red seaweed Gracilaria verrucosa has been used for the production of bioethanol. Pretreatment for monosaccharide production was carried out with 12% (w/v) G. verrucosa slurry and 500 mM HNO3 at 121°C for 90 min. Enzymatic hydrolysis was performed with a mixture of commercial enzymes (Cellic C-Tec 2 and Celluclast 1.5 L; 16 U/ml) at 50°C and 150 rpm for 48 h. G. verrucosa was composed of 66.9% carbohydrates. In this study, 61.0 g/L monosaccharides were obtained from 120.0 g dw/l G. verrucosa. The fermentation inhibitors such as hydroxymethylfurfural (HMF), levulinic acid, and formic acid were produced during pretreatment. Activated carbon was used to remove HMF. Wildtype and adaptively evolved Saccharomyces cerevisiae, Candida lusitaniae, and Kluyveromyces marxianus were used for fermentation to evaluate ethanol production.
Collapse
Affiliation(s)
- Yurim Park
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - In Yung Sunwoo
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Jiwon Yang
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Gwi-Teak Jeong
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Sung-Koo Kim
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea,Corresponding author Phone: +82-51-629-5868 Fax: + 82-51-629-5863 E-mail:
| |
Collapse
|
11
|
Dharshini RS, Fathima AA, Dharani SR, Ramya M. Utilization of Alginate from Brown Macroalgae for Ethanol Production by Clostridium phytofermentans. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820020040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Sukwong P, Sunwoo IY, Nguyen TH, Jeong GT, Kim SK. R-phycoerythrin, R-phycocyanin and ABE production from Gelidium amansii by Clostridium acetobutylicum. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|