1
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
2
|
Pant R, Kumar R, Sharma S, Karuppasamy R, Veerappapillai S. Exploring the potential of Halalkalibacterium halodurans laccase for endosulfan and chlorophacinone degradation: insights from molecular docking and molecular dynamics simulations. J Biomol Struct Dyn 2023:1-15. [PMID: 37990551 DOI: 10.1080/07391102.2023.2283165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Pesticides are widely used in agriculture but at the same time, a majority of them are known to cause serious harm to health and the environment. In the recent past, laccases have been reported as key enzymes having the ability to degrade pollutants by converting them into less toxic forms. In this investigation, laccase from polyextremophilic bacterium Halalkalibacterium halodurans C-125 was analyzed for its structural, physicochemical, and functional characterization using in silico approaches. The 3D model of the said enzyme is unknown; therefore, the model was generated by template-independent modeling using ROBETTA, I-TASSER, and Alphafold server. The best-generated model from Alphafold with a confidence of 0.95 was validated from ERRAT and Verify 3D scores of 89.95 and 91.80%, respectively. The Ramachandran plot generated using the PROCHECK server further predicted the accuracy of the model with 93.7% and 5.9% of residues present in most favored and additional allowed regions of the plot respectively. The active sites, ion binding sites, and subcellular localization of laccase were also predicted. The generated model was docked with 121 pollutants (pesticides, insecticides, herbicides, fungicides, and rodenticides) for its degradation potential towards these pollutants. Two ligands chlorophacinone (based on the highest binding energy) and endosulfan (based on agricultural uses) were selected for molecular dynamic simulation studies. Endosulfan as a pesticide is banned but in some countries governments allow its use for special purposes which need serious consideration on developing bioremediation approaches for endosulfan degradation. MD simulation studies revealed that both chlorophacinone and endosulfan form hydrogen bonds and hydrophobic bonds with the active site of laccase and chlorophacinone-laccase complex were more stable in comparison to endosulfan. The present investigation provides insight into the structural features of laccase and its potential for the degradation of pesticides which can be further validated by experimental data.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajat Pant
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
| | - Ravi Kumar
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
- Department of Biological Sciences and Engineering, Netaji Subhas Institute of Technology (University of Delhi), New Delhi, India
| | - Shilpa Sharma
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shanthi Veerappapillai
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Li G, Yuan Y, Jin B, Zhang Z, Murtaza B, Zhao H, Li X, Wang L, Xu Y. Feasibility insights into the application of Paenibacillus pabuli E1 in animal feed to eliminate non-starch polysaccharides. Front Microbiol 2023; 14:1205767. [PMID: 37608941 PMCID: PMC10440823 DOI: 10.3389/fmicb.2023.1205767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
The goal of the research was to find alternative protein sources for animal farming that are efficient and cost-effective. The researchers focused on distillers dried grains with solubles (DDGS), a co-product of bioethanol production that is rich in protein but limited in its use as a feed ingredient due to its high non-starch polysaccharides (NSPs) content, particularly for monogastric animals. The analysis of the Paenibacillus pabuli E1 genome revealed the presence of 372 genes related to Carbohydrate-Active enzymes (CAZymes), with 98 of them associated with NSPs degrading enzymes that target cellulose, hemicellulose, and pectin. Additionally, although lignin is not an NSP, two lignin-degrading enzymes were also examined because the presence of lignin alongside NSPs can hinder the catalytic effect of enzymes on NSPs. To confirm the catalytic ability of the degrading enzymes, an in vitro enzyme activity assay was conducted. The results demonstrated that the endoglucanase activity reached 5.37 U/mL, while beta-glucosidase activity was 4.60 U/mL. The filter paper experiments did not detect any reducing sugars. The xylanase and beta-xylosidase activities were measured at 11.05 and 4.16 U/mL, respectively. Furthermore, the pectate lyase and pectin lyase activities were found to be 8.19 and 2.43 U/mL, respectively. The activities of laccase and MnP were determined as 1.87 and 4.30 U/mL, respectively. The researchers also investigated the effect of P. pabuli E1 on the degradation of NSPs through the solid-state fermentation of DDGS. After 240 h of fermentation, the results showed degradation rates of 11.86% for hemicellulose, 11.53% for cellulose, and 8.78% for lignin. Moreover, the crude protein (CP) content of DDGS increased from 26.59% to 30.59%. In conclusion, this study demonstrated that P. pabuli E1 possesses various potential NSPs degrading enzymes that can effectively eliminate NSPs in feed. This process improves the quality and availability of the feed, which is important for animal farming as it seeks alternative protein sources to replace traditional nutrients.
Collapse
Affiliation(s)
- Gen Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yue Yuan
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Bowen Jin
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Zhiqiang Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Hong Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
4
|
Pentari C, Zerva A, Dimarogona M, Topakas E. The xylobiohydrolase activity of a GH30 xylanase on natively acetylated xylan may hold the key for the degradation of recalcitrant xylan. Carbohydr Polym 2023; 305:120527. [PMID: 36737185 DOI: 10.1016/j.carbpol.2022.120527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
Acetyl substitutions are common on the hemicellulosic structures of lignocellulose, which up until recently were known to inhibit xylanase activity. Emerging data, however, suggest that xylanases are able to accommodate acetyl side-groups within their catalytic site. In the present work, a fungal GH30 xylanase from Thermothelomyces thermophila, namely TtXyn30A, was shown to release acetylated xylobiose when acting on pretreated lignocellulosic substrate. The released disaccharides could be acetylated at the 2-OH, 3-OH or both positions of the non-reducing end xylose, but the existence of the acetylation on the reducing end cannot be excluded. The synergy of TtXyn30A with acetyl esterases indicates that particular subsites within its active site cannot tolerate acetylated xylopyranose residues. Molecular docking showed that acetyl group can be accommodated on the 2- or 3-OH position of the non-reducing end xylose, unlike the reducing-end xylose (subsite -1), where only 3-OH decoration can be accommodated. Such insight into the catalytic activity of TtXyn30A could contribute to a better understanding of its biological role and thus lead to a more sufficient biotechnological utilization.
Collapse
Affiliation(s)
- Christina Pentari
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Anastasia Zerva
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Maria Dimarogona
- Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering, University of Patras, Patras, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
5
|
Khangwal I, Skariyachan S, Uttarkar A, Muddebihalkar AG, Niranjan V, Shukla P. Understanding the Xylooligosaccharides Utilization Mechanism of Lactobacillus brevis and Bifidobacterium adolescentis: Proteins Involved and Their Conformational Stabilities for Effectual Binding. Mol Biotechnol 2021; 64:75-89. [PMID: 34542815 DOI: 10.1007/s12033-021-00392-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/08/2021] [Indexed: 11/26/2022]
Abstract
Xylooligosaccharides having various degrees of polymerization such as xylobiose, xylotriose, and xylotetraose positively affect human health by interacting with gut proteins. The present study aimed to identify proteins present in gut microflora, such as xylosidase, xylulokinase, etc., with the help of retrieved whole-genome annotations and find out the mechanistic interactions of those with the above substrates. The 3D structures of proteins, namely Endo-1,4-beta-xylanase B (XynB) from Lactobacillus brevis and beta-D-xylosidase (Xyl3) from Bifidobacterium adolescentis, were computationally predicted and validated with the help of various bioinformatics tools. Molecular docking studies identified the effectual binding of these proteins to the xylooligosaccharides, and the stabilities of the best-docked complexes were analyzed by molecular dynamic simulation. The present study demonstrated that XynB and Xyl3 showed better effectual binding toward Xylobiose with the binding energies of - 5.96 kcal/mol and - 4.2 kcal/mol, respectively. The interactions were stabilized by several hydrogen bonding having desolvation energy (- 6.59 and - 7.91). The conformational stabilities of the docked complexes were observed in the four selected complexes of XynB-xylotriose, XynB-xylotetraose, Xyl3-xylobiose, and Xyn3-xylotriose by MD simulations. This study showed that the interactions of these four complexes are stable, which means they have complex metabolic activities among each other. Extending these studies of understanding, the interaction between specific probiotics enzymes and their ligands can explore the detailed design of synbiotics in the future.
Collapse
Affiliation(s)
- Ishu Khangwal
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Sinosh Skariyachan
- Department of Microbiology, St. Pius X College, Rajapuram, Kasaragod, Kerala, India
| | - Akshay Uttarkar
- Department of Biotechnology, RV College of Engineering, Bengaluru, Karnataka, India
| | | | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bengaluru, Karnataka, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
6
|
Fujimoto Z, Kishine N, Teramoto K, Tsutsui S, Kaneko S. Structure-based substrate specificity analysis of GH11 xylanase from Streptomyces olivaceoviridis E-86. Appl Microbiol Biotechnol 2021; 105:1943-1952. [PMID: 33564921 DOI: 10.1007/s00253-021-11098-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/14/2020] [Accepted: 01/03/2021] [Indexed: 11/26/2022]
Abstract
Although many xylanases have been studied, many of the characteristics of xylanases toward branches in xylan remain unclear. In this study, the substrate specificity of a GH11 xylanase from Streptomyces olivaceoviridis E-86 (SoXyn11B) was elucidated based on its three-dimensional structure. Subsite mapping suggests that SoXyn11B has seven subsites (four subsites on the - side and three subsites on the + side), and it is one longer than the GH10 xylanase from S. olivaceoviridis (SoXyn10A). SoXyn11B has no affinity for the subsites at either end of the scissile glycosidic bond, and the sugar-binding energy at subsite - 2 was the highest, followed by subsite + 2. These properties were very similar to those of SoXyn10A. In contrast, SoXyn11B produced different branched oligosaccharides from bagasse compared with those of SoXyn10A. These branched oligosaccharides were identified as O-β-D-xylopyranosyl-(1→4)-[O-α-L-arabinofuranosyl-(1→3)]-O-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranose (Ara3Xyl4) and O-β-D-xylopyranosyl-(1→4)-[O-4-O-methyl-α-D-glucuronopyranosyl-(l→2)]-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranose (MeGlcA3Xyl4) by nuclear magnetic resonance (NMR) and electrospray ionization mass spectrometry (ESI-MS) and confirmed by crystal structure analysis of SoXyn11B in complex with these branched xylooligosaccharides. SoXyn11B has a β-jerryroll fold structure, and the catalytic cleft is located on the inner β-sheet of the fold. The ligand-binding structures revealed seven subsites of SoXyn11B. The 2- and 3-hydroxy groups of xylose at the subsites + 3, + 2, and - 3 face outwards, and an arabinose or a glucuronic acid side chain can be linked to these positions. These subsite structures appear to cause the limited substrate specificity of SoXyn11B for branched xylooligosaccharides. KEY POINTS: • Crystal structure of family 11 β-xylanase from Streptomyces olivaceoviridis was determined. • Topology of substrate-binding cleft of family 11 β-xylanase from Streptomyces olivaceoviridis was characterized. • Mode of action of family 11 β-xylanase from Streptomyces olivaceoviridis for substitutions in xylan was elucidated.
Collapse
Affiliation(s)
- Zui Fujimoto
- Advanced Analysis Center, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, 305-8518, Japan
| | - Naomi Kishine
- Advanced Analysis Center, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, 305-8518, Japan
| | - Koji Teramoto
- Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Sosyu Tsutsui
- Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima, 890-0065, Japan
| | - Satoshi Kaneko
- Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan.
| |
Collapse
|