1
|
Anyaegbunam NJ, Mba IE, Ige AO, Ogunrinola TE, Emenike OK, Uwazie CK, Ujah PN, Oni AJ, Anyaegbunam ZKG, Olawade DB. Revisiting the smart metallic nanomaterials: advances in nanotechnology-based antimicrobials. World J Microbiol Biotechnol 2024; 40:102. [PMID: 38366174 DOI: 10.1007/s11274-024-03925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Despite significant advancements in diagnostics and treatments over the years, the problem of antimicrobial drug resistance remains a pressing issue in public health. The reduced effectiveness of existing antimicrobial drugs has prompted efforts to seek alternative treatments for microbial pathogens or develop new drug candidates. Interestingly, nanomaterials are currently gaining global attention as a possible next-generation antibiotics. Nanotechnology holds significant importance, particularly when addressing infections caused by multi-drug-resistant organisms. Alternatively, these biomaterials can also be combined with antibiotics and other potent biomaterials, providing excellent synergistic effects. Over the past two decades, nanoparticles have gained significant attention among research communities. Despite the complexity of some of their synthesis strategies and chemistry, unrelenting efforts have been recorded in synthesizing potent and highly effective nanomaterials using different approaches. With the ongoing advancements in nanotechnology, integrating it into medical procedures presents novel approaches for improving the standard of patient healthcare. Although the field of nanotechnology offers promises, much remains to be learned to overcome the several inherent issues limiting their full translation to clinics. Here, we comprehensively discussed nanotechnology-based materials, focusing exclusively on metallic nanomaterials and highlighting the advances in their synthesis, chemistry, and mechanisms of action against bacterial pathogens. Importantly, we delve into the current challenges and prospects associated with the technology.
Collapse
Affiliation(s)
- Ngozi J Anyaegbunam
- Measurement and Evaluation unit, Science Education Department, University of Nigeria, Nsukka, Nigeria
| | - Ifeanyi Elibe Mba
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka, Nsukka, Nigeria.
| | - Abimbola Olufunke Ige
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | | | | | | | - Patrick Ndum Ujah
- 7Department of Education Foundations, University of Nigeria Nsukka, Nsukka, Nigeria
| | - Ayodele John Oni
- Department of Industrial chemistry, Federal University of Technology, Akure, Nigeria
| | | | - David B Olawade
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, UK
| |
Collapse
|
2
|
Sadhu VA, Jha S, Park TJ, Kailasa SK. Green Emissive Molybdenum Nanoclusters for Selective and Sensitive Detection of Hydroxyl Radical in Water Samples. J Fluoresc 2024:10.1007/s10895-023-03578-5. [PMID: 38190011 DOI: 10.1007/s10895-023-03578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
In this work, Cassia tora (C. tora) have been used as a template to synthesize green fluorescent C. tora molybdenum nanoclusters (C. tora-MoNCs) through a green chemistry approach. These C. tora-MoNCs showed a quantum yield (QY) of 7.72% and exhibited a significant emission peak at 498 nm when excited at 380 nm. The as-prepared C. tora-MoNCs had an average size of 3.48 ± 0.80 nm and showed different surface functionality. The as-synthesized C. tora-MoNCs were successfully identified the hydroxyl radical (•OH) via a fluorescence quenching mechanism. Also, fluorescence lifetime and Stern-Volmer proved that after the addition of •OH radicals it was quenched the fluorescence intensity via a static quenching mechanism. The limit of detection is 9.13 nM, and this approach was successfully utilized for sensing •OH radicals in water samples with a good recovery rate.
Collapse
Affiliation(s)
- Vibhuti Atulbhai Sadhu
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, 395 007, Surat, Gujarat, India
| | - Sanjay Jha
- ASPEE Shakilam Biotechnology Institute, Navsari Agricultural University, 39500, Surat, Gujarat, India
| | - Tae Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, 06974, Seoul, Republic of Korea
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, 395 007, Surat, Gujarat, India.
| |
Collapse
|
3
|
Abaszadeh F, Ashoub MH, Khajouie G, Amiri M. Nanotechnology development in surgical applications: recent trends and developments. Eur J Med Res 2023; 28:537. [PMID: 38001554 PMCID: PMC10668503 DOI: 10.1186/s40001-023-01429-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
This paper gives a detailed analysis of nanotechnology's rising involvement in numerous surgical fields. We investigate the use of nanotechnology in orthopedic surgery, neurosurgery, plastic surgery, surgical oncology, heart surgery, vascular surgery, ophthalmic surgery, thoracic surgery, and minimally invasive surgery. The paper details how nanotechnology helps with arthroplasty, chondrogenesis, tissue regeneration, wound healing, and more. It also discusses the employment of nanomaterials in implant surfaces, bone grafting, and breast implants, among other things. The article also explores various nanotechnology uses, including stem cell-incorporated nano scaffolds, nano-surgery, hemostasis, nerve healing, nanorobots, and diagnostic applications. The ethical and safety implications of using nanotechnology in surgery are also addressed. The future possibilities of nanotechnology are investigated, pointing to a possible route for improved patient outcomes. The essay finishes with a comment on nanotechnology's transformational influence in surgical applications and its promise for future breakthroughs.
Collapse
Affiliation(s)
- Farzad Abaszadeh
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghazal Khajouie
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Mahnaz Amiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
4
|
Giray G, Gonca S, Özdemir S, Isik Z, Yılmaz E, Soylak M, Dizge N. Novel extracellular synthesized silver nanoparticles using thermophilic Anoxybacillus flavithermus and Geobacillus stearothermophilus and their evaluation as nanodrugs. Prep Biochem Biotechnol 2023; 54:294-306. [PMID: 37452678 DOI: 10.1080/10826068.2023.2230496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
In this investigation, two new thermophilic bacteria were isolated. The new isolates were characterized by 16S rRNA, biochemical, morphological, and physiological analyzes and the isolates were identified as Geobacillus stearothermophilus strain Gecek20 and thermophilic Anoxybacillus flavithermus strain Gecek19. Various biological activities of extracellular Ag-NPs synthesized from thermophilic G. stearothermophilus strain Gecek20 and thermophilic A. flavithermus strain Gecek19 were evaluated. The produced NPs were analyzed by SEM, SEM-EDX, and XRD analyses. The antioxidant abilities of new synthesized Ag-NPs from thermophilic G. stearothermophilus strain Gecek20 (T1-Ag-NPs) and new synthesized Ag-NPs from thermophilic A. flavithermus strain Gecek19 (T2-Ag-NPs) were studied by DPPH inhibition and metal chelating ability. The highest DPPH and metal chelating abilities of T1-Ag-NPs and T2-Ag-NPs at 200 mg/L concentration were 93.17 and 90.85%, and 75.80 and 83.64%, respectively. The extracellular green synthesized T1-Ag-NPs and T2-AgN-Ps showed DNA nuclease activity at all tested concentrations. Moreover, both new synthesized Ag-NPs had antimicrobial activity against the strains studied, especially on Gram positive bacteria. T1-Ag-NPs and T2-AgNPs also showed powerful Escherichia coli growth inhibition. The highest biofilm inhibition percentages of T1-Ag-NPs and T2-Ag-NPs against Pseudomonas aeruginosa and Staphylococcus aureus were 100.0%, respectively, at 500 mg/L.
Collapse
Affiliation(s)
- Gülay Giray
- Department of Veterinary Medicine, Ihsangazi Technical Science Vocational School, Ihsangazi, Kastamonu, Turkey
| | - Serpil Gonca
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Mersin, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, Mersin, Turkey
| | - Zelal Isik
- Department of Environmental Engineering, Mersin University, Mersin, Turkey
| | - Erkan Yılmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
- Nanotechnology Application and Research Center, ERNAM Erciyes University, Kayseri, Turkey
- Technology Research&Application Center (TAUM), Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Technology Research&Application Center (TAUM), Erciyes University, Kayseri, Turkey
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
5
|
Ganguli S, Howlader S, Ullah AA, Bhuiyan FR, Akhi AA, Hasan A, Dey K, Islam S, Ali F, Chakraborty AK, Bhattacharjee S, Dey BK. Size controlled biosynthesis of silver nanoparticles using Ophiorrhiza mungos, Ophiorrhiza harrisiana and Ophiorrhiza rugosa aqueous leaf extract and their antimicrobial activity. Heliyon 2023; 9:e16072. [PMID: 37215826 PMCID: PMC10196522 DOI: 10.1016/j.heliyon.2023.e16072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
In this work, the aqueous leaf extracts of three Ophiorrhiza genus species, namely Ophiorrhiza mungos (Om), Ophiorrhiza harrisiana (Oh) and Ophiorrhiza rugosa (Or), have been used as the reducing and capping agents to control the size of AgNPs, Om-AgNPs, Oh-AgNPs and Or-AgNPs, respectively and found to be an effective antimicrobial agent against a wide range of bacteria and fungi. The biosynthesized AgNPs were studied by UV-Visible spectrophotometer, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray, transmission electron microscopy (TEM) and Fourier transform infrared spectrometer (FTIR). The average particle sizes of Om-AgNPs, Oh-AgNPs and Or-AgNPs were measured as 17 nm, 22 nm and 26 nm, respectively, and observed to be spherical and face-centered cubic crystals. The antibacterial test of synthesized AgNPs was performed against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Vibrio cholerae where the maximum antibacterial activity was observed by reducing the nano-size and increasing the silver content of AgNPs. The antifungal effect of these three types of AgNPs on Penicillium notatum and Aspergillus niger was also evaluated and their growth with AgNPs concentrations of 450 μg/mL was inhibited up to 80-90% and 55-70%, respectively. The size-control synthesis of AgNPs using the Ophiorrhiza genus species is presented here for the first time where the synthesized AgNPs showed higher stability and antimicrobial activities. Therefore, this study might lead to synthesize AgNPs with different morphologies using plant extracts of the same genus but from different species and provide strong encouragement for future applications in treating infectious diseases.
Collapse
Affiliation(s)
- Sumon Ganguli
- Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram, 4331, Bangladesh
- Biomaterials Research Laboratory (BRL), Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Sabbir Howlader
- Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram, 4331, Bangladesh
- Biomaterials Research Laboratory (BRL), Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram, 4331, Bangladesh
| | - A.K.M. Atique Ullah
- Nanoscience and Technology Laboratory, Atomic Energy Center, Bangladesh Atomic Energy Commission, Dhaka, 1000, Bangladesh
| | - Farhana Rumzum Bhuiyan
- Laboratory of Biotechnology and Molecular Biology, Department of Botany, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Aklima A. Akhi
- Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram, 4331, Bangladesh
- Biomaterials Research Laboratory (BRL), Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Abid Hasan
- Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram, 4331, Bangladesh
- Biomaterials Research Laboratory (BRL), Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Kamol Dey
- Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Saiful Islam
- Industrial Microbiology Research Division, Bangladesh Council of Scientific and Industrial Resaerch (BCSIR), Chattogram Laboratories, Chattogram, 4220, Bangladesh
| | - Ferdousi Ali
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Ashok Kumar Chakraborty
- Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Samiran Bhattacharjee
- Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, 1000, Bangladesh
| | - Benu Kumar Dey
- Department of Chemistry and Pro-Vice-Chancellor (Academic), University of Chittagong, Chattogram, 4331, Bangladesh
| |
Collapse
|
6
|
Biosynthesis of Bixa orellana seed extract mediated silver nanoparticles with moderate antioxidant, antibacterial and antiproliferative activity. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
7
|
Muthulakshmi L, Suganya K, Murugan M, Annaraj J, Duraipandiyan V, Al Farraj DA, Elshikh MS, Juliet A, Pasupuleti M, Arockiaraj J. Antibiofilm efficacy of novel biogenic silver nanoparticles from Terminalia catappa against food-borne Listeria monocytogenes ATCC 15,313 and mechanisms investigation in-vivo and in-vitro. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:102083. [DOI: 10.1016/j.jksus.2022.102083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
|
8
|
Peng F, Fang F, Xiang R, Liu D. Engineering properties of Cassia tora L. seeds and meal as a function of moisture content. Sci Rep 2022; 12:8651. [PMID: 35606481 PMCID: PMC9126907 DOI: 10.1038/s41598-022-12748-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Engineering properties are of great importance for Cassia tora L. seeds in aspects of harvesting, handling mechanical design and product processing. The effect of moisture content (7, 10, 13, 16 and 19%) (wet basis) on the properties: physical (length, width, bulk and true density, porosity, thousand seeds mass, coefficient of static friction and angle of repose), mechanical (hardness, fragmentation energy and failure deformations), and thermal (specific heat, thermal conductivity and thermal diffusivity), were systematically studied. As the moisture contents increase from 7 to 19%, the length (L) increased from 4.52 to 5.87 mm, the thickness (T) from 2.51 to 3.21 mm and the width (W) from 2.36 to 3.02 mm, respectively. The bulk and true density of Cassia tora L. seeds decreased from 775.83 to 654.17 kg/m3 and from 1295.21 to 1154.72 kg/m3, respectively, with the moisture content raised from 7 to 19%. The thermal conductivity of Cassia tora L. seeds meal was found to be 0.068–0.098 W m−1 K−1, 0.078–0.112 W m−1 K−1, 0.089–0.125 W m−1 K−1, 0.098–0.136 W m−1 K−1, 0.108–0.148 W m−1 K−1, 0.119–0.159 W m−1 K−1, respectively, at 25 °C, 45 °C, 65 °C, 85 °C, 105 °C and 125 °C in moisture ranges of 7–19%. The thermal diffusivity was found to decrease from 5.21 × 10–8 to 4.53 × 10–8 m2/s, from 5.75 × 10–8 to 4.91 × 10–8 m2/s, from 6.11 × 10–8 to 5.17 × 10–8 m2/s, from 6.52 × 10–8 to 5.36 × 10–8 m2/s, from 7.17 × 10–8 to 5.77 × 10–8 m2/s, from 7.36 × 10–8 to 5.84 × 10–8 m2/s, respectively, at 25 °C, 45 °C, 65 °C, 85 °C, 105 °C and 125 °C in moisture ranges of 7–19%. The results suggested that physical properties exhibited linear relationships with moisture content using the regression model, while mechanical properties showed a second-order polynomial relationship with moisture content. Furthermore, significant variation existed in thermal properties because of differentiate moisture content and temperature. These data and rules are also useful for high efficiency machines design and mechanisms development.
Collapse
Affiliation(s)
- Fei Peng
- School of Artificial Intelligence, Beijing Technology and Business University, Beijing, 100048, China.
| | - Fang Fang
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Rui Xiang
- School of Artificial Intelligence, Beijing Technology and Business University, Beijing, 100048, China
| | - Dan Liu
- School of Artificial Intelligence, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|