1
|
Wang MC, Yang XY, Zhou JF, Zhang WX, Li BJ. Pyridine-borane complex-catalysed thioesterification: the direct conversion of carboxylic acids to thioesters. Chem Commun (Camb) 2024; 60:6671-6674. [PMID: 38860640 DOI: 10.1039/d4cc01326c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Thioesters are a common class of biologically active fragments and synthetically useful building blocks. An attractive synthetic approach would be to use simple and bench-stable carboxylic acids as a coupling partner. Herein, we present a 4-bromo pyridine-borane complex as a catalyst for the direct coupling of carboxylic acids with thiols. A wide range of thioesters with good functional group compatibility could be prepared via this metal-free approach. The merit of this strategy is exemplified by the modification of carboxylic acid-containing drugs.
Collapse
Affiliation(s)
- Ming-Chuan Wang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China.
| | - Xue-Ying Yang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China.
| | - Jian-Feng Zhou
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China.
| | - Wan-Xuan Zhang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China.
| | - Bin-Jie Li
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China.
| |
Collapse
|
2
|
Ferreira I, Oliveira I, Bordon K, Reis M, Wiezel G, Sanchez C, Santos L, Santos-Filho N, Pucca M, Antunes L, Lopes D, Arantes E. Beyond Angiogenesis: The Multitasking Approach of the First PEGylated Vascular Endothelial Growth Factor ( CdtVEGF) from Brazilian Rattlesnake Venom. Toxins (Basel) 2023; 15:483. [PMID: 37624240 PMCID: PMC10467076 DOI: 10.3390/toxins15080483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
A pioneering study regarding the isolation, biochemical evaluation, functional assays and first PEGylation report of a novel vascular endothelial growth factor from Crotalus durissus terrificus venom (CdtVEGF and PEG-CdtVEGF). CdtVEGF was isolated from crude venom using two different chromatographic steps, representing 2% of soluble venom proteins. Its primary sequence was determined using mass spectrometry analysis, and the molecule demonstrated no affinity to heparin. The Brazilian crotalid antivenom recognized CdtVEGF. Both native and PEGylated CdtVEGF were able to induce new vessel formation and migration, and to increase the metabolic activity of human umbilical endothelial vascular cells (HUVEC), resulting in better wound closure (~50% within 12 h) using the native form. CdtVEGF induced leukocyte recruitment to the peritoneal cavity in mice, with a predominance of neutrophil influx followed by lymphocytes, demonstrating the ability to activate the immune system. The molecule also induced a dose-dependent increase in vascular permeability, and PEG-CdtVEGF showed less in vivo inflammatory activity than CdtVEGF. By unraveling the intricate properties of minor components of snake venom like svVEGF, this study illuminates the indispensable significance of exploring these molecular tools to unveil physiological and pathological processes, elucidates the mechanisms of snakebite envenomings, and could possibly be used to design a therapeutic drug.
Collapse
Affiliation(s)
- Isabela Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Isadora Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Karla Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Mouzarllem Reis
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Gisele Wiezel
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Caroline Sanchez
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Luísa Santos
- Institute Multidisciplinary in Health, Federal University of Bahia, Vitoria da Conquista 40110-909, BA, Brazil
| | - Norival Santos-Filho
- Department of Biochemistry and Organic Chemistry, Chemistry Institute, Sao Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil
| | - Manuela Pucca
- Department of Clinical Analysis, Sao Paulo State University (UNESP) Araraquara 14800-901, SP, Brazil
| | - Lusânia Antunes
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Daiana Lopes
- Institute Multidisciplinary in Health, Federal University of Bahia, Vitoria da Conquista 40110-909, BA, Brazil
| | - Eliane Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| |
Collapse
|
3
|
Turani-I-Belloto K, Chiriac R, Toche F, Petit E, Yot PG, Alauzun JG, Demirci UB. Synthesis: Molecular Structure, Thermal-Calorimetric and Computational Analyses, of Three New Amine Borane Adducts. Molecules 2023; 28:molecules28031469. [PMID: 36771135 PMCID: PMC9921861 DOI: 10.3390/molecules28031469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Cyclopropylamine borane C3H5NH2BH3 (C3AB), 2-ethyl-1-hexylamine borane CH3(CH2)3CH(C2H5)CH2NH2BH3 (C2C6AB) and didodecylamine borane (C12H25)2NHBH3 ((C12)2AB) are three new amine borane adducts (ABAs). They are synthesized by reaction of the corresponding amines with a borane complex, the reaction being exothermic as shown by Calvet calorimetry. The successful synthesis of each has been demonstrated by FTIR, Raman and NMR. For instance, the 11B NMR spectra show the presence of signals typical of the NBH3 environment, thereby implying the formation of B-N bonds. The occurrence of dihydrogen bonds (DHBs) for each of the ABAs has been highlighted by DSC and FTIR, and supported by DFT calculations (via the Mulliken charges for example). When heated, the three ABAs behave differently: C3AB and C2C6AB decompose from 68 to 100 °C whereas (C12)2AB is relatively stable up to 173 °C. That means that these ABAs are not appropriate as hydrogen carriers, but the 'most' stable (C12)2AB could open perspectives for the synthesis of advanced materials.
Collapse
Affiliation(s)
- Kevin Turani-I-Belloto
- Institut Europeen des Membranes, IEM–UMR 5635, ENSCM, CNRS, Universite de Montpellier, 34090 Montpellier, France
| | - Rodica Chiriac
- Laboratoire des Multimateriaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - François Toche
- Laboratoire des Multimateriaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Eddy Petit
- Institut Europeen des Membranes, IEM–UMR 5635, ENSCM, CNRS, Universite de Montpellier, 34090 Montpellier, France
| | - Pascal G. Yot
- ICGM, Universite de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Johan G. Alauzun
- ICGM, Universite de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Umit B. Demirci
- Institut Europeen des Membranes, IEM–UMR 5635, ENSCM, CNRS, Universite de Montpellier, 34090 Montpellier, France
- Correspondence:
| |
Collapse
|
4
|
Turani‐I‐Belloto K, Valero‐Pedraza M, Petit E, Chiriac R, Toche F, Granier D, Yot PG, Alauzun JG, Demirci UB. Solid‐State Structures of Primary Long‐Chain Alkylamine Borane Adducts – Synthesis, Properties and Computational Analysis. ChemistrySelect 2022. [DOI: 10.1002/slct.202203533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Kevin Turani‐I‐Belloto
- Institut Europeen des Membranes IEM – UMR 5635 Universite de Montpellier, ENSCM, CNRS 34090 France
| | | | - Eddy Petit
- Institut Europeen des Membranes IEM – UMR 5635 Universite de Montpellier, ENSCM, CNRS 34090 France
| | - Rodica Chiriac
- Laboratoire des Multimateriaux et Interfaces UMR CNRS 5615 Univ Lyon 1 Université Claude Bernard Lyon 1 F 69622 Villeurbanne France
| | - François Toche
- Laboratoire des Multimateriaux et Interfaces UMR CNRS 5615 Univ Lyon 1 Université Claude Bernard Lyon 1 F 69622 Villeurbanne France
| | - Dominique Granier
- Institut Charles Gerhardt Univ. Montpellier CNRS, ENSCM Montpellier France
| | - Pascal G. Yot
- Institut Charles Gerhardt Univ. Montpellier CNRS, ENSCM Montpellier France
| | - Johan G. Alauzun
- Institut Charles Gerhardt Univ. Montpellier CNRS, ENSCM Montpellier France
| | - Umit B. Demirci
- Institut Europeen des Membranes IEM – UMR 5635 Universite de Montpellier, ENSCM, CNRS 34090 France
| |
Collapse
|
5
|
Lambert E, Stratton BW, Hammer NI. Raman Spectroscopic and Quantum Chemical Investigation of the Pyridine-Borane Complex and the Effects of Dative Bonding on the Normal Modes of Pyridine. ACS OMEGA 2022; 7:13189-13195. [PMID: 35474808 PMCID: PMC9026032 DOI: 10.1021/acsomega.2c00636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The pyridine-borane (PyBH3) complex was analyzed by Raman vibrational spectroscopy and density functional theory to elucidate its structural and vibrational properties and to compare these with those for neat pyridine (Py). The borane-nitrogen (BN) bond length, the BN dative bond stretching frequency, and the effects of dative-bonded complex formation on Py are presented. Rather than having a single isolated stretching motion, the complex exhibits multiple BN dative bond stretches that are coupled to Py's vibrations. These modes exhibit large shifts that are higher in energy relative to neat Py, similar to previous observations of Py/water mixtures. However, significantly higher charge transfer was observed in the dative-bonded complex when compared to the hydrogen-bonded complex with water. A linear relationship between charge transfer and shifts to higher frequencies of pyridine's vibrational modes agrees well with earlier observations. The present work is of interest to those seeking a stronger relationship between charge-transfer events and concomitant changes in molecular properties.
Collapse
|