1
|
Kotb ES, Alhamdi HW, Alfaifi MY, Darweesh O, Shati AA, Elbehairi SEI, Serag WM, Hassan YA, Elshaarawy RFM. Examining the quaternary ammonium chitosan Schiff base-ZnO nanocomposite's potential as protective therapy for rats' cisplatin-induced hepatotoxicity. Int J Biol Macromol 2024; 276:133616. [PMID: 39009258 DOI: 10.1016/j.ijbiomac.2024.133616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Despite cisplatin's long history as a cornerstone in cancer therapy, both acquired chemoresistance and significant impacts on healthy tissues limit its use. Hepatotoxicity is one of its side effects. Adjunct therapies have shown promise in not only attenuating liver damage caused by cisplatin but also in enhancing the efficacy of chemotherapy. In this context, a new quaternary ammonium chitosan Schiff base (QACSB) was synthesized and applied as an encapsulating agent for the in-situ synthesis of QACSB-ZnO nanocomposite. MATERIAL AND METHODS Thirty male albino rats were classified into Group 1 (control) distilled water, Group 2 (Cisplatin-treated) (12 mg/kg, i.p), and Group 3 (QACSB-ZnO NCs/cisplatin-treated) (150 mg/kg/day QACSB-ZnO NCs, i.p) for 14 days + a single dose of cisplatin. Liver functions, tissue TNF-α, MDA, and GSH were measured as well as histopathological and immunohistochemical studies were performed. RESULTS The QACSB-ZnO NCs significantly restore liver functions, tissue TNF-α, MDA, and GSH levels (p < 0.001). Histopathological examination showed patchy necrosis in the cisplatin-treated group versus other groups. The QACSB-ZnO NCs showed a weak TGF-β1 (score = 4) and a moderate Bcl-2 immunohistochemistry expression (score = 6) versus the CP group. CONCLUSIONS QACSB-ZnO NCs have been shown to protect the liver from cisplatin-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ebtesam S Kotb
- Department of Chemistry, Faculty of Science, Suez University, 43533 Suez, Egypt
| | - Heba W Alhamdi
- College of Sciences, Biology Department, King Khalid University, Abha 61413, Saudi Arabia
| | - Mohammad Y Alfaifi
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia; Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha 9004, Saudi Arabia
| | - Omeed Darweesh
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Kirkuk, Iraq
| | - Ali A Shati
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia; Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha 9004, Saudi Arabia
| | - Serag Eldin I Elbehairi
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia; Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha 9004, Saudi Arabia; Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza, Egypt.
| | - Waleed M Serag
- Department of Chemistry, Faculty of Science, Suez University, 43533 Suez, Egypt
| | - Yasser A Hassan
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Kirkuk, Iraq; Department of pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Reda F M Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University, 43533 Suez, Egypt; Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
2
|
Taghavian H, Černík M, Dvořák L. Advanced (bio)fouling resistant surface modification of PTFE hollow-fiber membranes for water treatment. Sci Rep 2023; 13:11871. [PMID: 37481651 PMCID: PMC10363105 DOI: 10.1038/s41598-023-38764-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023] Open
Abstract
Membrane surface treatment to modify anti-(bio)fouling resistivity plays a key role in membrane technology. This paper reports on the successful use of air-stimulated surface polymerization of dopamine hydrochloride incorporated ZnO nanoparticles (ZnO NPs) for impeding the intrinsic hydrophobicity and low anti-(bio)fouling resistivity of polytetrafluoroethylene (PTFE) hollow-fiber membranes (HFMs). The study involved the use of pristine and polydopamine (Pdopa) coated PTFE HFMs, both with and without the presence of an air supply and added ZnO NPs. Zeta potential measurements were performed to evaluate the dispersion stability of ZnO NPs prior to immobilization, while morphological characterization and time-dependency of the Pdopa growth layer were illustrated through scanning electron microscopy. Pdopa surface polymerization and ZnO NPs immobilization were confirmed using FT-IR and EDX spectroscopy. Transformation of the PTFE HFM surface features to superhydrophilic was demonstrated through water contact angle analysis and the stability of immobilized ZnO NPs assessed by ICP analysis. Anti-fouling criteria and (bio)fouling resistivity performance of the surface-modified membranes were assessed through flux recovery determination of bovine serum albumin in dead-end filtration as well as dynamic-contact-condition microbial evaluation against Staphylococcus spp. and Escherichia coli, respectively. The filtration recovery ratio and antimicrobial results suggested promising surface modification impacts on the anti-fouling properties of PTFE HFM. As such, the method represents the first successful use of air-stimulated Pdopa coating incorporating ZnO NPs to induce superhydrophilic PTFE HFM surface modification. Such a method can be extended to the other membranes associated with water treatment processes.
Collapse
Affiliation(s)
- Hadi Taghavian
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 2, 461 17 Liberec 1, Czech Republic
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Lukáš Dvořák
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic.
| |
Collapse
|
3
|
Embaby EM, Saleh RM, Marghani BH, Barakat N, Awadin W, Elshal MF, Ali IS, Abu-Heakal N. The combined effect of zinc oxide nanoparticles and milrinone on acute renal ischemia/reperfusion injury in rats: Potential underlying mechanisms. Life Sci 2023; 323:121435. [PMID: 37068707 DOI: 10.1016/j.lfs.2023.121435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 04/19/2023]
Abstract
AIM To investigate the efficacy of zinc oxide nanoparticles (ZnO-NPs) and/or milrinone (MIL) on renal ischemia/reperfusion injury (I/RI) in rats and their possible underlying mechanisms. MATERIALS AND METHODS Forty-eight adult male Sprague-Dawley albino rats were randomly assigned into six equal-sized groups (n = 8): normal control, sham-operated, I/R group (45 min/24 h), ZnO-NPs group (10 mg/Kg i.p.), MIL group (0.5 mg/Kg i.p.), and ZnO-NPs + MIL group in the same previous doses. KEY FINDINGS In comparison to the I/R-operated group, administration of either ZnO-NPs or MIL significantly decreased serum creatinine and urea concentrations, and renal vascular permeability (p < 0.05). The oxidative stress was significantly declined, as evidenced by increased GPx, CAT, and SOD activities and decreased MDA and NO concentrations. Renal expressions of TNF-α, NF-κB, KIM-1, NGAL, and caspase-3 decreased significantly, while Nrf2 increased significantly. Histopathology investigation revealed improvement with minimal renal lesions and fibrosis after ZnO-NPs or MIL treatments. The combined treatments synergistically improved the studied parameters more than either treatment alone. These findings were validated by molecular modeling, which revealed that MIL inhibited TNF-α, NF-kB, caspase-3, KIM-1 and NGAL. SIGNIFICANCE Both ZnO-NPs and MIL exerted cytoprotective effects against acute renal I/RI, and a combination of both was found to be even more effective. This renoprotective effect is suggested to be mediated through activation of Nrf2 and the prevention of the NF-κB activation-induced oxidative stress and inflammation, which may strengthen the potential role of ZnO-NPs or MIL in renal I/RI protection during surgical procedures.
Collapse
Affiliation(s)
- Eman M Embaby
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rasha M Saleh
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Basma H Marghani
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Biochemistry, Physiology and Pharmacology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr, South of Sinaa 46612, Egypt
| | - Nashwa Barakat
- Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Walaa Awadin
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed F Elshal
- Molecular Biology Department, Genetic Engineering and Biotechnology Institute, University of Sadat City, Sadat City, Egypt
| | - Islam S Ali
- Basic Science Department, Delta University for Science and Technology, Gamasa, Dakahlia, Egypt
| | - Nabil Abu-Heakal
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
4
|
Hashim M, Mujahid H, Hassan S, Bukhari S, Anjum I, Hano C, Abbasi BH, Anjum S. Implication of Nanoparticles to Combat Chronic Liver and Kidney Diseases: Progress and Perspectives. Biomolecules 2022; 12:1337. [PMID: 36291548 PMCID: PMC9599274 DOI: 10.3390/biom12101337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Liver and kidney diseases are the most frequently encountered problems around the globe. Damage to the liver and kidney may occur as a result of exposure to various drugs, chemicals, toxins, and pathogens, leading to severe disease conditions such as cirrhosis, fibrosis, hepatitis, acute kidney injury, and liver and renal failure. In this regard, the use of nanoparticles (NPs) such as silver nanoparticles (AgNPs), gold nanoparticles (AuNPs), and zinc oxide nanoparticles (ZnONPs) has emerged as a rapidly developing field of study in terms of safe delivery of various medications to target organs with minimal side effects. Due to their physical characteristics, NPs have inherent pharmacological effects, and an accidental buildup can have a significant impact on the structure and function of the liver and kidney. By suppressing the expression of the proinflammatory cytokines iNOS and COX-2, NPs are known to possess anti-inflammatory effects. Additionally, NPs have demonstrated their ability to operate as an antioxidant, squelching the generation of ROS caused by substances that cause oxidative stress. Finally, because of their pro-oxidant properties, they are also known to increase the level of ROS, which causes malignant liver and kidney cells to undergo apoptosis. As a result, NPs can be regarded as a double-edged sword whose inherent therapeutic benefits can be refined as we work to comprehend them in terms of their toxicity.
Collapse
Affiliation(s)
- Mariam Hashim
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| | - Huma Mujahid
- Department of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Samina Hassan
- Department of Botany, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| | - Shanila Bukhari
- Department of Botany, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| | - Iram Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| | - Christophe Hano
- Department of Biological Chemistry, University of Orleans, Eure & Loir Campus, 28000 Chartres, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 15320, Pakistan
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| |
Collapse
|