1
|
Loi JX, Syutsubo K, Rabuni MF, Takemura Y, Aoki M, Chua ASM. Downflow sponge biofilm reactors for polluted raw water treatment: Performance optimisation, kinetics, and microbial community. CHEMOSPHERE 2024; 358:142156. [PMID: 38679172 DOI: 10.1016/j.chemosphere.2024.142156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Water outages caused by elevated ammonium (NH4+-N) levels are a prevalent problem faced by conventional raw water treatment plants in developing countries. A treatment solution requires a short hydraulic retention time (HRT) to overcome nitrification rate limitation in oligotrophic conditions. In this study, the performance of polluted raw water treatment using a green downflow sponge biofilm (DSB) technology was evaluated. We operated two DSB reactors, DSB-1 and DSB-2 under different NH4+-N concentration ranges (DSB-1: 3.2-5.0 mg L-1; DSB-2: 1.7-2.6 mg L-1) over 360 days and monitored their performance under short HRT (60 min, 30 min, 20 min, and 15 min). The experimental results revealed vertical segregation of organic removal in the upper reactor depths and nitrification in the lower depths. Under the shortest HRT of 15 min, both DSB reactors achieved stable NH4+-N and chemical oxygen demand removal (≥95%) and produced minimal effluent nitrite (NO2--N). DSB system could facilitate complete NH4+-N oxidation to nitrate (NO3--N) without external aeration energy requirement. The 16S rRNA sequencing data revealed that nitrifying bacteria Nitrosomonas and Nitrospira in the reactor were stratified. Putative comammox bacteria with high ammonia affinity was successfully enriched in DSB-2 operating at a lower NH4+-N loading rate, which is advantageous in oligotrophic treatment. This study suggests that a high hydraulic rate DSB system with efficient ammonia removal could incorporate ammonia treatment capability into polluted raw water treatment process and ensure safe water supply in many developing countries.
Collapse
Affiliation(s)
- Jia Xing Loi
- Sustainable Process Engineering Centre, Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Kazuaki Syutsubo
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan; Research Centre of Water Environment Technology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
| | - Mohamad Fairus Rabuni
- Sustainable Process Engineering Centre, Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Yasuyuki Takemura
- Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama, 644-0023, Japan.
| | - Masataka Aoki
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan.
| | - Adeline Seak May Chua
- Sustainable Process Engineering Centre, Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Aoki M, Takemura Y, Kawakami S, Yoochatchaval W, Tran P. T, Tomioka N, Ebie Y, Syutsubo K. Quantitative detection and reduction of potentially pathogenic bacterial groups of Aeromonas, Arcobacter, Klebsiella pneumoniae species complex, and Mycobacterium in wastewater treatment facilities. PLoS One 2023; 18:e0291742. [PMID: 37768925 PMCID: PMC10538766 DOI: 10.1371/journal.pone.0291742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
Water quality parameters influence the abundance of pathogenic bacteria. The genera Aeromonas, Arcobacter, Klebsiella, and Mycobacterium are among the representative pathogenic bacteria identified in wastewater. However, information on the correlations between water quality and the abundance of these bacteria, as well as their reduction rate in existing wastewater treatment facilities (WTFs), is lacking. Hence, this study aimed to determine the abundance and reduction rates of these bacterial groups in WTFs. Sixty-eight samples (34 influent and 34 non-disinfected, treated, effluent samples) were collected from nine WTFs in Japan and Thailand. 16S rRNA gene amplicon sequencing analysis revealed the presence of Aeromonas, Arcobacter, and Mycobacterium in all influent wastewater and treated effluent samples. Quantitative real-time polymerase chain reaction (qPCR) was used to quantify the abundance of Aeromonas, Arcobacter, Klebsiella pneumoniae species complex (KpSC), and Mycobacterium. The geometric mean abundances of Aeromonas, Arcobacter, KpSC, and Mycobacterium in the influent wastewater were 1.2 × 104-2.4 × 105, 1.0 × 105-4.5 × 106, 3.6 × 102-4.3 × 104, and 6.9 × 103-5.5 × 104 cells mL-1, respectively, and their average log reduction values were 0.77-2.57, 1.00-3.06, 1.35-3.11, and -0.67-1.57, respectively. Spearman's rank correlation coefficients indicated significant positive or negative correlations between the abundances of the potentially pathogenic bacterial groups and Escherichia coli as well as water quality parameters, namely, chemical/biochemical oxygen demand, total nitrogen, nitrate-nitrogen, nitrite-nitrogen, ammonium-nitrogen, suspended solids, volatile suspended solids, and oxidation-reduction potential. This study provides valuable information on the development and appropriate management of WTFs to produce safe, hygienic water.
Collapse
Affiliation(s)
- Masataka Aoki
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Yasuyuki Takemura
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Shuji Kawakami
- Department of Civil Engineering, National Institute of Technology (KOSEN), Nagaoka College, Nagaoka, Niigata, Japan
| | - Wilasinee Yoochatchaval
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| | - Thao Tran P.
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Noriko Tomioka
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Yoshitaka Ebie
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Kazuaki Syutsubo
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
- Research Center of Water Environment Technology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
3
|
Aoki M, Miyashita Y, Miwa T, Watari T, Yamaguchi T, Syutsubo K, Hayashi K. Manganese oxidation and prokaryotic community analysis in a polycaprolactone-packed aerated biofilm reactor operated under seawater conditions. 3 Biotech 2022; 12:187. [PMID: 35875177 PMCID: PMC9304527 DOI: 10.1007/s13205-022-03250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
Biogenic manganese oxides (BioMnOx) have been receiving increasing attention for the removal of environmental contaminants and recovery of minor metals from water environments. However, the enrichment of heterotrophic Mn(II)-oxidizing microorganisms for BioMnOx production in the presence of fast-growing coexisting heterotrophs is challenging. In our previous work, we revealed that polycaprolactone (PCL), a biodegradable aliphatic polyester, can serve as an effective solid organic substrate to enrich Mn-oxidizing microbial communities under seawater conditions. However, marine BioMnOx-producing bioreactor systems utilizing PCL have not yet been established. Therefore, a laboratory-scale continuous-flow PCL-packed aerated biofilm (PAB) reactor was operated for 238 days to evaluate its feasibility for BioMnOx production under seawater conditions. After the start-up of the reactor, the average dissolved Mn removal rates of 0.4-2.3 mg/L/day, likely caused by Mn(II) oxidation, were confirmed under different influent dissolved Mn concentrations (2.5-14.0 mg/L on average) and theoretical hydraulic retention time (0.19-0.77 day) conditions. The 16S rRNA gene amplicon sequencing analysis suggested the presence of putative Mn(II)-oxidizing and PCL-degrading bacterial lineages in the reactor. Two highly dominant operational units (OTUs) in the packed PCL-associated biofilm were assigned to the genera Marinobacter and Pseudohoeflea, whereas the genus Lewinella and unclassified Alphaproteobacteria OTUs were highly dominant in the MnOx-containing black/dark brown precipitate-associated biofilm formed in the reactor. Excitation-emission matrix fluorescence spectroscopy analysis revealed the production of tyrosine- and tryptophane-like components, which may serve as soluble heterotrophic organic substrates in the reactor. Our findings indicate that PAB reactors are potentially applicable to BioMnOx production under seawater conditions.
Collapse
Affiliation(s)
- Masataka Aoki
- Regional Environment Conservation Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
- Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama Japan
| | - Yukina Miyashita
- Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama Japan
| | - Toru Miwa
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Niigata Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata Japan
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Niigata Japan
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata Japan
| | - Kazuaki Syutsubo
- Regional Environment Conservation Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Hayashi
- Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama Japan
| |
Collapse
|