1
|
Oliver A, Podell S, Wegley Kelly L, Sparagon WJ, Plominsky AM, Nelson RS, Laurens LML, Augyte S, Sims NA, Nelson CE, Allen EE. Enrichable consortia of microbial symbionts degrade macroalgal polysaccharides in Kyphosus fish. mBio 2024; 15:e0049624. [PMID: 38534158 PMCID: PMC11077953 DOI: 10.1128/mbio.00496-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Coastal herbivorous fishes consume macroalgae, which is then degraded by microbes along their digestive tract. However, there is scarce genomic information about the microbiota that perform this degradation. This study explores the potential of Kyphosus gastrointestinal microbial symbionts to collaboratively degrade and ferment polysaccharides from red, green, and brown macroalgae through in silico study of carbohydrate-active enzyme and sulfatase sequences. Recovery of metagenome-assembled genomes (MAGs) from previously described Kyphosus gut metagenomes and newly sequenced bioreactor enrichments reveals differences in enzymatic capabilities between the major microbial taxa in Kyphosus guts. The most versatile of the recovered MAGs were from the Bacteroidota phylum, whose MAGs house enzyme collections able to decompose a variety of algal polysaccharides. Unique enzymes and predicted degradative capacities of genomes from the Bacillota (genus Vallitalea) and Verrucomicrobiota (order Kiritimatiellales) highlight the importance of metabolic contributions from multiple phyla to broaden polysaccharide degradation capabilities. Few genomes contain the required enzymes to fully degrade any complex sulfated algal polysaccharide alone. The distribution of suitable enzymes between MAGs originating from different taxa, along with the widespread detection of signal peptides in candidate enzymes, is consistent with cooperative extracellular degradation of these carbohydrates. This study leverages genomic evidence to reveal an untapped diversity at the enzyme and strain level among Kyphosus symbionts and their contributions to macroalgae decomposition. Bioreactor enrichments provide a genomic foundation for degradative and fermentative processes central to translating the knowledge gained from this system to the aquaculture and bioenergy sectors.IMPORTANCESeaweed has long been considered a promising source of sustainable biomass for bioenergy and aquaculture feed, but scalable industrial methods for decomposing terrestrial compounds can struggle to break down seaweed polysaccharides efficiently due to their unique sulfated structures. Fish of the genus Kyphosus feed on seaweed by leveraging gastrointestinal bacteria to degrade algal polysaccharides into simple sugars. This study reconstructs metagenome-assembled genomes for these gastrointestinal bacteria to enhance our understanding of herbivorous fish digestion and fermentation of algal sugars. Investigations at the gene level identify Kyphosus guts as an untapped source of seaweed-degrading enzymes ripe for further characterization. These discoveries set the stage for future work incorporating marine enzymes and microbial communities in the industrial degradation of algal polysaccharides.
Collapse
Affiliation(s)
- Aaron Oliver
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Sheila Podell
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Linda Wegley Kelly
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Wesley J. Sparagon
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, Hawaii, USA
| | - Alvaro M. Plominsky
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | | | | | | | | | - Craig E. Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, Hawaii, USA
| | - Eric E. Allen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Oliver A, Podell S, Kelly LW, Sparagon WJ, Plominsky AM, Nelson RS, Laurens LML, Augyte S, Sims NA, Nelson CE, Allen EE. Enrichable consortia of microbial symbionts degrade macroalgal polysaccharides in Kyphosus fish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.568905. [PMID: 38076955 PMCID: PMC10705383 DOI: 10.1101/2023.11.28.568905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Coastal herbivorous fishes consume macroalgae, which is then degraded by microbes along their digestive tract. However, there is scarce foundational genomic work on the microbiota that perform this degradation. This study explores the potential of Kyphosus gastrointestinal microbial symbionts to collaboratively degrade and ferment polysaccharides from red, green, and brown macroalgae through in silico study of carbohydrate-active enzyme and sulfatase sequences. Recovery of metagenome-assembled genomes (MAGs) reveals differences in enzymatic capabilities between the major microbial taxa in Kyphosus guts. The most versatile of the recovered MAGs were from the Bacteroidota phylum, whose MAGs house enzymes able to decompose a variety of algal polysaccharides. Unique enzymes and predicted degradative capacities of genomes from the Bacillota (genus Vallitalea) and Verrucomicrobiota (order Kiritimatiellales) suggest the potential for microbial transfer between marine sediment and Kyphosus digestive tracts. Few genomes contain the required enzymes to fully degrade any complex sulfated algal polysaccharide alone. The distribution of suitable enzymes between MAGs originating from different taxa, along with the widespread detection of signal peptides in candidate enzymes, is consistent with cooperative extracellular degradation of these carbohydrates. This study leverages genomic evidence to reveal an untapped diversity at the enzyme and strain level among Kyphosus symbionts and their contributions to macroalgae decomposition. Bioreactor enrichments provide a genomic foundation for degradative and fermentative processes central to translating the knowledge gained from this system to the aquaculture and bioenergy sectors.
Collapse
Affiliation(s)
- Aaron Oliver
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Sheila Podell
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Linda Wegley Kelly
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Wesley J. Sparagon
- Daniel K. Inouye Center for Microbial Oceanography, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Alvaro M. Plominsky
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | - Craig E. Nelson
- Daniel K. Inouye Center for Microbial Oceanography, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Eric E. Allen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Rodríguez-Viso P, Domene A, Sánchez A, Vélez D, Monedero V, Devesa V, Zúñiga M. Challenges and strategies for preventing intestinal damage associated to mercury dietary exposure. Toxicology 2023; 494:153580. [PMID: 37328091 DOI: 10.1016/j.tox.2023.153580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
Food represents the major risk factor for exposure to mercury in most human populations. Therefore, passage through the gastrointestinal tract plays a fundamental role in its entry into the organism. Despite the intense research carried out on the toxicity of Hg, the effects at the intestinal level have received increased attention only recently. In this review we first provide a critical appraisal of the recent advances on the toxic effects of Hg at the intestinal epithelium. Next, dietary strategies aimed to diminish Hg bioavailability or modulate the epithelial and microbiota responses will be revised. Food components and additives, including probiotics, will be considered. Finally, limitations of current approaches to tackle this problem and future lines of research will be discussed.
Collapse
Affiliation(s)
| | - Adrián Domene
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Alicia Sánchez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Vicente Monedero
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Manuel Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain.
| |
Collapse
|