1
|
Gorini F, Tonacci A. Vitamin C in the Management of Thyroid Cancer: A Highway to New Treatment? Antioxidants (Basel) 2024; 13:1242. [PMID: 39456495 PMCID: PMC11505632 DOI: 10.3390/antiox13101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy, with an increased global incidence in recent decades, despite a substantially unchanged survival. While TC has an excellent overall prognosis, some types of TC are associated with worse patient outcomes, depending on the genetic setting. Furthermore, oxidative stress is related to more aggressive features of TC. Vitamin C, an essential nutrient provided with food or as a dietary supplement, is a well-known antioxidant and a scavenger of reactive oxygen species; however, at high doses, it can induce pro-oxidant effects, acting through multiple biological mechanisms that play a crucial role in killing cancer cells. Although experimental data and, less consistently, clinical studies, suggest the possibility of antineoplastic effects of vitamin C at pharmacological doses, the antitumor efficacy of this nutrient in TC remains at least partly unexplored. Therefore, this review discusses the current state of knowledge on the role of vitamin C, alone or in combination with other conventional therapies, in the management of TC, the mechanisms underlying this association, and the perspectives that may emerge in TC treatment strategies, and, also, in light of the development of novel functional foods useful to this extent, by implementing novel sensory analysis strategies.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
2
|
Wu Z. Transcriptomic analysis reveals oxidative stress-related signature and molecular subtypes in cholangio carcinoma. Mol Genet Genomics 2024; 299:86. [PMID: 39240371 DOI: 10.1007/s00438-024-02170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/24/2024] [Indexed: 09/07/2024]
Abstract
Cholangiocarcinoma (CCA) is a heterogeneous and aggressive malignancy with limited therapeutic options and poor prognosis. The identification of reliable prognostic biomarkers and a deeper understanding of the molecular subtypes are critical for the development of targeted therapies and improvement of patient outcomes. This study aims to uncover oxidative stress-related genes (ORGs) in CCA and develop a prognostic risk model using comprehensive transcriptomic analysis from The Cancer Genome Atlas (TCGA). Through LASSO regression analysis, we identified prognosis-related ORGs and constructed a prognostic signature consisting of six ORGs. This signature demonstrated strong predictive performance in survival analysis and ROC curve assessment. Functional enrichment and GSEA analyses revealed significant enrichment of immune-related pathways among different risk groups. GSVA analysis indicated reduced activity in inflammation and oxidative stress pathways in the high-risk subgroup, and xCell results showed lower immune cell infiltration levels in this group. Additionally, immune checkpoint genes and immune-related pathways were downregulated in the high-risk subgroup. Our research has developed a unique prognostic model focusing on oxidative stress, enabling accurate forecasting of patient outcomes and providing crucial insights and recommendations for the prognosis of individuals with CCA. Future studies should aim to validate these findings in clinical settings and further explore therapeutic targets within oxidative stress pathways.
Collapse
Affiliation(s)
- Zichao Wu
- The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Haizhu District, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
3
|
Hefny SM, El-Moselhy TF, El-Din N, Ammara A, Angeli A, Ferraroni M, El-Dessouki AM, Shaldam MA, Yahya G, Al-Karmalawy AA, Supuran CT, Tawfik HO. A new framework for novel analogues of pazopanib as potent and selective human carbonic anhydrase inhibitors: Design, repurposing rational, synthesis, crystallographic, in vivo and in vitro biological assessments. Eur J Med Chem 2024; 274:116527. [PMID: 38810335 DOI: 10.1016/j.ejmech.2024.116527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Herein, we describe the design and synthesis of novel aryl pyrimidine benzenesulfonamides APBSs 5a-n, 6a-c, 7a-b, and 8 as pazopanib analogues to explore new potent and selective inhibitors for the CA IX. All APBSs were examined in vitro for their promising inhibition activity against a small panel of hCAs (isoforms I, II, IX, and XII). The X-ray crystal structure of CA I in adduct with a representative APBS analogue was solved. APBS-5m, endowed with the best hCA IX inhibitory efficacy and selectivity, was evaluated for antiproliferative activity against a small panel of different cancer cell lines, SK-MEL-173, MDA-MB-231, A549, HCT-116, and HeLa, and it demonstrated one-digit IC50 values range from 2.93 μM (MDA-MB-231) to 5.86 μM (A549). Furthermore, compound APBS-5m was evaluated for its influence on hypoxia-inducible factor (HIF-1α) production, apoptosis induction, and colony formation in MDA-MB-231 cancer cells. The in vivo efficacy of APBS-5m as an antitumor agent was additionally investigated in an animal model of Solid Ehrlich Carcinoma (SEC). In order to offer perceptions into the conveyed hCA IX inhibitory efficacy and selectivity in silico, a molecular docking investigation was also carried out.
Collapse
Affiliation(s)
- Salma M Hefny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Tarek F El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Nabaweya El-Din
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Andrea Ammara
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo, Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo, Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Marta Ferraroni
- University of Florence, Department of Chemistry, Via della Lastruccia, 50019, Sesto Fiorentino, Italy
| | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia, 44519, Egypt; Molecular Biology Institute of Barcelona, Spanish National Research Council (IBMB-CSIC), 08028, Barcelona, Catalonia, Spain
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo, Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
4
|
Tawfik HO, Mousa MHA, Zaky MY, El-Dessouki AM, Sharaky M, Abdullah O, El-Hamamsy MH, Al-Karmalawy AA. Rationale design of novel substituted 1,3,5-triazine candidates as dual IDH1(R132H)/ IDH2(R140Q) inhibitors with high selectivity against acute myeloid leukemia: In vitro and in vivo preclinical investigations. Bioorg Chem 2024; 149:107483. [PMID: 38805913 DOI: 10.1016/j.bioorg.2024.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
In this study, novel substituted 1,3,5-triazine candidates (4a-d, 5a-j, and 6a-d) were designed as second-generation small molecules to act as dual IDH1 and IDH2 inhibitors according to the pharmacophoric features of both vorasidenib and enasidenib. Compounds 6a and 6b for leukemia cell lines showed from low to sub-micromolar GI50. Moreover, compounds 4c, 5f, and 6b described the frontier antitumor activity against THP1 and Kasumi Leukemia cancer cells with IC50 values of (10 and 12), (10.5 and 7), and (6.2 and 5.9) µg/mL, which were superior to those of cisplatin (25 and 28) µg/mL, respectively. Interestingly, compounds 4c, 6b, and 6d represented the best dual IDH1(R132H)/IDH2(R140Q) inhibitory potentials with IC50 values of (0.72 and 1.22), (0.12 and 0.93), and (0.50 and 1.28) µg/mL, respectively, compared to vorasidenib (0.02 and 0.08) µg/mL and enasidenib (0.33 and 1.80) µg/mL. Furthermore, the most active candidate (6b) has very promising inhibitory potentials towards HIF-1α, VEGF, and SDH, besides, a marked increase of ROS was observed as well. Besides, compound 6b induced the upregulation of P53, BAX, Caspases 3, 6, 8, and 9 proteins by 3.70, 1.99, 2.06, 1.73, 1.75, and 1.85-fold changes, respectively, and the downregulation for the BCL-2 protein by 0.55-fold change compared to the control. Besides, the in vivo behavior of compound 6b as an antitumor agent was evaluated in female mice bearing solid Ehrlich carcinoma tumors. Notably, compound 6b administration resulted in a prominent decrease in the weight and volume of the tumors, accompanied by improvements in biochemical, hematological, and histological parameters.
Collapse
Affiliation(s)
- Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Mai H A Mousa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Omeima Abdullah
- Pharmaceutical Sciences Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mervat H El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt.
| |
Collapse
|
5
|
Montalbano AM, Di Sano C, Albano GD, Gjomarkaj M, Ricciardolo FLM, Profita M. IL-17A Drives Oxidative Stress and Cell Growth in A549 Lung Epithelial Cells: Potential Protective Action of Oleuropein. Nutrients 2024; 16:2123. [PMID: 38999871 PMCID: PMC11243068 DOI: 10.3390/nu16132123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
IL-17A drives inflammation and oxidative stress, affecting the progression of chronic lung diseases (asthma, chronic obstructive pulmonary disease (COPD), lung cancer, and cystic fibrosis). Oleuropein (OLP) is a polyphenolic compound present in olive oil and widely included in the Mediterranean diet. It exerts antioxidant and anti-inflammatory activities, oxidative stress resistance, and anticarcinogenic effects with a conceivable positive impact on human health. We hypothesized that OLP positively affects the mechanisms of oxidative stress, apoptosis, DNA damage, cell viability during proliferation, and cell growth in alveolar epithelial cells and tested its effect in a human alveolar epithelial cell line (A549) in the presence of IL-17A. Our results show that OLP decreases the levels of oxidative stress (Reactive Oxygen Species, Mitochondrial membrane potential) and DNA damage (H2AX phosphorylation-ser139, Olive Tail Moment data) and increases cell apoptosis in A549 cells exposed to IL-17A. Furthermore, OLP decreases the number of viable cells during proliferation, the migratory potential (Scratch test), and the single cell capacity to grow within colonies as a cancer phenotype in A549 cells exposed to IL-17A. In conclusion, we suggest that OLP might be useful to protect lung epithelial cells from oxidative stress, DNA damage, cell growth, and cell apoptosis. This effect might be exerted in lung diseases by the downregulation of IL-17A activities. Our results suggest a positive effect of the components of olive oil on human lung health.
Collapse
Affiliation(s)
- Angela Marina Montalbano
- Institute of Translational Pharmacology-National Research Council of Italy (IFT-CNR), 90146 Palermo, Italy
| | - Caterina Di Sano
- Institute of Translational Pharmacology-National Research Council of Italy (IFT-CNR), 90146 Palermo, Italy
| | - Giusy Daniela Albano
- Institute of Translational Pharmacology-National Research Council of Italy (IFT-CNR), 90146 Palermo, Italy
| | - Mark Gjomarkaj
- Institute of Translational Pharmacology-National Research Council of Italy (IFT-CNR), 90146 Palermo, Italy
| | - Fabio Luigi Massimo Ricciardolo
- Institute of Translational Pharmacology-National Research Council of Italy (IFT-CNR), 90146 Palermo, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| | - Mirella Profita
- Institute of Translational Pharmacology-National Research Council of Italy (IFT-CNR), 90146 Palermo, Italy
| |
Collapse
|
6
|
Long F, Wang P, Ma Y, Zhang X, Wang T. Chemopreventive effects of atractylenolide-III on mammary tumorigenesis via activation of the Nrf2/ARE pathway through autophagic degradation of Keap1. Biomed Pharmacother 2024; 176:116852. [PMID: 38834007 DOI: 10.1016/j.biopha.2024.116852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
The incidence of breast cancer is increasing annually, making it a major health threat for women. Chemoprevention using natural, dietary, or synthetic products has emerged as a promising approach to address this growing burden. Atractylenolide-III (AT-III), a sesquiterpenoid present in various medicinal herbs, has demonstrated potential therapeutic effects against several diseases, including tumors, nonalcoholic fatty liver disease, and cerebral ischemic injury. However, its impact on breast cancer chemoprevention remains unexplored. In this study, we used an N-methyl-N-nitrosourea (NMU)-induced rat breast cancer model and 17β-estradiol (E2)-treated MCF-10A cells to evaluate the chemopreventive potential of AT-III on mammary tumorigenesis. AT-III inhibited mammary tumor progression, evidenced by reduced tumor volume and multiplicity, prolonged tumor latency, and the reversal of NMU-induced weight loss. Furthermore, AT-III suppressed NMU-induced inflammation and oxidative stress through the Nrf2/ARE pathway in breast cancer tissues. In vitro, AT-III effectively suppressed E2-induced anchorage-independent growth and cell migration in MCF-10A cells. Nrf2 knockdown attenuated the protective effects of AT-III, highlighting the pivotal role of Nrf2 in AT-III-mediated suppression of tumorigenesis. The mechanism involves the induction of Nrf2 expression by AT-III through the autophagic degradation of Kelch-like ECH-associated protein 1 (Keap1). Overall, the results of this study indicate that AT-III is a promising candidate for breast cancer chemoprevention and provide valuable insights into its molecular interactions and signaling pathways.
Collapse
Affiliation(s)
- Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu 610032, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu 610032, China
| | - Yu Ma
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Xudong Zhang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Ting Wang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China.
| |
Collapse
|
7
|
Wang Y. The interplay of exercise and polyphenols in cancer treatment: A focus on oxidative stress and antioxidant mechanisms. Phytother Res 2024; 38:3459-3488. [PMID: 38690720 DOI: 10.1002/ptr.8215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
Exercise has been demonstrated to induce an elevated production of free radicals, leading to the onset of oxidative stress. Numerous studies highlight the positive impacts of aerobic exercise, primarily attributed to the increase in overall antioxidant capacity. The evidence suggests that engaging in aerobic exercise contributes to a reduction in the likelihood of advanced cancer and mortality. Oxidative stress occurs when there is an imbalance between the generation of free radicals and the collective antioxidant defense system, encompassing both enzymatic and nonenzymatic antioxidants. Typically, oxidative stress triggers the formation of reactive oxygen or nitrogen species, instigating or advancing various issues in cancers and other diseases. The pro-oxidant-antioxidant balance serves as a direct measure of this imbalance in oxidative stress. Polyphenols contain a variety of bioactive compounds, including flavonoids, flavanols, and phenolic acids, conferring antioxidant properties. Previous research highlights the potential of polyphenols as antioxidants, with documented effects on reducing cancer risk by influencing processes such as proliferation, angiogenesis, and metastasis. This is primarily attributed to their recognized antioxidant capabilities. Considering the extensive array of signaling pathways associated with exercise and polyphenols, this overview will specifically focus on oxidative stress, the antioxidant efficacy of polyphenols and exercise, and their intricate interplay in cancer treatment.
Collapse
Affiliation(s)
- Yubing Wang
- College of Physical Education, Qilu Normal University, Jinan, Shandong, China
| |
Collapse
|
8
|
Yin H, Liu R, Bie L. Gastrodin ameliorates neuroinflammation in Alzheimer's disease mice by inhibiting NF-κB signaling activation via PPARγ stimulation. Aging (Albany NY) 2024; 16:8657-8666. [PMID: 38752930 PMCID: PMC11164526 DOI: 10.18632/aging.205831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/28/2024] [Indexed: 06/06/2024]
Abstract
AIM We investigated the effects and targets of gastrodin (GAS) for improving cognitive ability in Alzheimer's disease (AD). METHODS The targets and mechanisms of GAS were analyzed by network pharmacology. Morris water and eight-arm radial mazes were used to detect the behaviors of 7-months-old APP/PS1 mice. The levels of IBA-1 and PPARγ were examined by histochemical staining, nerve cells were detected by Nissl staining, inflammatory cytokines were measured by ELISA, and protein expressions were monitored by Western blotting. The neurobehavioral effects of GAS on mice were detected after siRNA silencing of PPARγ. Microglia were cultured in vitro and Aβ1-42 was used to simulate the pathology of AD. After treatment with GAS, the levels of inflammatory cytokines and proteins were assayed. RESULTS Network pharmacological analysis revealed that PPARγ was the action target of GAS. By stimulating PPARγ, GAS inhibited NF-κB signaling activation and decreased neuroinflammation and microglial activation, thereby ameliorating the cognitive ability of AD mice. After silencing PPARγ, GAS could not further improve such cognitive ability. Cellular-level results demonstrated that GAS inhibited microglial injury, reduced tissue inflammation, and activated PPARγ. CONCLUSIONS GAS can regulate microglia-mediated inflammatory response by stimulating PPARγ and inhibiting NF-κB activation, representing a mechanism whereby it improves the cognitive behavior of AD.
Collapse
Affiliation(s)
- Haoyuan Yin
- Department of Neurovascular Surgery, Bethune First Hospital, Jilin University, Changchun 130021, Jilin, China
| | - Renjie Liu
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Li Bie
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
9
|
Prodromou SI, Chatzopoulou F, Saiti A, Giannopoulos-Dimitriou A, Koudoura LA, Pantazaki AA, Chatzidimitriou D, Vasiliou V, Vizirianakis IS. Hepatotoxicity assessment of innovative nutritional supplements based on olive-oil formulations enriched with natural antioxidants. Front Nutr 2024; 11:1388492. [PMID: 38812942 PMCID: PMC11133736 DOI: 10.3389/fnut.2024.1388492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction This study focuses on the assessment of extra virgin olive-oil and olive fruit-based formulations enriched with natural antioxidants as potential nutritional supplements for alleviating symptoms and long-term consequences of illnesses whose molecular pathophysiology is affected by oxidative stress and inflammation, such as Alzheimer's disease (AD). Methods Besides evaluating cell viability and proliferation capacity of human hepatocellular carcinoma HepG2 cells exposed to formulations in culture, hepatotoxicity was also considered as an additional safety measure using quantitative real-time PCR on RNA samples isolated from the cell cultures and applying approaches of targeted molecular analysis to uncover potential pathway effects through gene expression profiling. Furthermore, the formulations investigated in this work contrast the addition of natural extract with chemical forms and evaluate the antioxidant delivery mode on cell toxicity. Results The results indicate minimal cellular toxicity and a significant beneficial impact on metabolic molecular pathways in HepG2 cell cultures, thus paving the way for innovative therapeutic strategies using olive-oil and antioxidants in dietary supplements to minimize the long-term effects of oxidative stress and inflammatory signals in individuals being suffered by disorders like AD. Discussion Overall, the experimental design and the data obtained support the notion of applying innovative molecular methodologies and research techniques to evidently advance the delivery, as well as the scientific impact and validation of nutritional supplements and dietary products to improve public health and healthcare outcomes.
Collapse
Affiliation(s)
- Sofia I. Prodromou
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fani Chatzopoulou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Labnet Laboratories, Department of Molecular Biology and Genetics, Thessaloniki, Greece
| | - Aikaterini Saiti
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Loukia A. Koudoura
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia A. Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Chatzidimitriou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Health Sciences, School of Health and Life Sciences, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
10
|
Yang L, Li M, Liu Y, Bai Y, Yin T, Chen Y, Jiang J, Liu S. MOTS-c is an effective target for treating cancer-induced bone pain through the induction of AMPK-mediated mitochondrial biogenesis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1323-1339. [PMID: 38716540 PMCID: PMC11532206 DOI: 10.3724/abbs.2024048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/20/2024] [Indexed: 10/17/2024] Open
Abstract
Bone cancer pain (BCP), due to cancer bone metastasis and bone destruction, is a common symptom of tumors, including breast, prostate, and lung tumors. Patients often experience severe pain without effective treatment. Here, using a mouse model of bone cancer, we report that MOTS-c, a novel mitochondrial-derived peptide, confers remarkable protection against cancer pain and bone destruction. Briefly, we find that the plasma level of endogenous MOTS-c is significantly lower in the BCP group than in the sham group. Accordingly, intraperitoneal administration of MOTS-c robustly attenuates bone cancer-induced pain. These effects are blocked by compound C, an AMPK inhibitor. Furthermore, MOTS-c treatment significantly enhances AMPKα 1/2 phosphorylation. Interestingly, mechanical studies indicate that at the spinal cord level, MOTS-c relieves pain by restoring mitochondrial biogenesis, suppressing microglial activation, and decreasing the production of inflammatory factors, which directly contribute to neuronal modulation. However, in the periphery, MOTS-c protects against local bone destruction by modulating osteoclast and immune cell function in the tumor microenvironment, providing long-term relief from cancer pain. Additionally, we find that chronic administration of MOTS-c has little effect on liver, renal, lipid or cardiac function in mice. In conclusion, MOTS-c improves BCP through peripheral and central synergistic effects on nociceptors, immune cells, and osteoclasts, providing a pharmacological and biological rationale for the development of mitochondrial peptide-based therapeutic agents for cancer-induced pain.
Collapse
Affiliation(s)
- Long Yang
- Jiangsu Province Key Laboratory of AnesthesiologyJiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyNMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhou221004China
| | - Miaomiao Li
- Jiangsu Province Key Laboratory of AnesthesiologyJiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyNMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhou221004China
| | - Yucheng Liu
- Department of Anesthesiologythe Affiliated Hospital of Xuzhou Medical UniversityXuzhou221018China
| | - Yang Bai
- Jiangsu Province Key Laboratory of AnesthesiologyJiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyNMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhou221004China
| | - Tianyu Yin
- Department of Anesthesiologythe Affiliated Hospital of Xuzhou Medical UniversityXuzhou221018China
| | - Yangyang Chen
- Department of Anesthesiologythe Affiliated Hospital of Xuzhou Medical UniversityXuzhou221018China
| | - Jinhong Jiang
- Jiangsu Province Key Laboratory of AnesthesiologyJiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyNMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhou221004China
| | - Su Liu
- Jiangsu Province Key Laboratory of AnesthesiologyJiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyNMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhou221004China
- Department of Anesthesiologythe Affiliated Hospital of Xuzhou Medical UniversityXuzhou221018China
| |
Collapse
|
11
|
Shkundin A, Halaris A. IL-8 (CXCL8) Correlations with Psychoneuroimmunological Processes and Neuropsychiatric Conditions. J Pers Med 2024; 14:488. [PMID: 38793070 PMCID: PMC11122344 DOI: 10.3390/jpm14050488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Interleukin-8 (IL-8/CXCL8), an essential CXC chemokine, significantly influences psychoneuroimmunological processes and affects neurological and psychiatric health. It exerts a profound effect on immune cell activation and brain function, suggesting potential roles in both neuroprotection and neuroinflammation. IL-8 production is stimulated by several factors, including reactive oxygen species (ROS) known to promote inflammation and disease progression. Additionally, CXCL8 gene polymorphisms can alter IL-8 production, leading to potential differences in disease susceptibility, progression, and severity across populations. IL-8 levels vary among neuropsychiatric conditions, demonstrating sensitivity to psychosocial stressors and disease severity. IL-8 can be detected in blood circulation, cerebrospinal fluid (CSF), and urine, making it a promising candidate for a broad-spectrum biomarker. This review highlights the need for further research on the diverse effects of IL-8 and the associated implications for personalized medicine. A thorough understanding of its complex role could lead to the development of more effective and personalized treatment strategies for neuropsychiatric conditions.
Collapse
Affiliation(s)
| | - Angelos Halaris
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Chicago Stritch School of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
| |
Collapse
|
12
|
Limam I, Ghali R, Abdelkarim M, Ouni A, Araoud M, Abdelkarim M, Hedhili A, Ben-Aissa Fennira F. Tunisian Artemisia campestris L.: a potential therapeutic agent against myeloma - phytochemical and pharmacological insights. PLANT METHODS 2024; 20:59. [PMID: 38698384 PMCID: PMC11067135 DOI: 10.1186/s13007-024-01185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Artemisia campestris L. (AC) leaves are widely recognized for their importance in traditional medicine. Despite the considerable amount of research conducted on this plant overworld, the chemical composition and the biological activity of the leaves grown in Tunisia remains poorly investigated. In this study of AC, a successive extraction method was employed (hexane, ethyl acetate and methanol) to investigate its bioactive constituents by LC-MS analysis, and their antioxidant, antibacterial, antifungal, and anticancer activities. RESULTS Data analysis revealed diverse compound profiles in AC extracts. Methanolic and ethyl acetate extracts exhibited higher polyphenolic content and antioxidant activities, while Hexane showed superior phytosterol extraction. Ethyl acetate extract displayed potent antibacterial activity against multi-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Additionally, all extracts demonstrated, for the first time, robust antifungal efficacy against Aspergillus flavus and Aspergillus niger. Cytotoxicity assays revealed the significant impact of methanolic and ethyl acetate extracts on metastatic breast cancer and multiple myeloma, examined for the first time in our study. Moreover, further analysis on multiple myeloma cells highlighted that the ethyl acetate extract induced apoptotic and necrotic cell death and resulted in an S phase cell cycle blockage, underscoring its therapeutic potential. CONCLUSIONS This investigation uncovers novel findings in Tunisian AC, notably the identification of lupeol, oleanolic acid, ursolic acid, stigmasterol and β-sitosterol. The study sheds light on the promising role of AC extracts in therapeutic interventions and underscores the need for continued research to harness its full potential in medicine and pharmaceutical development.
Collapse
Affiliation(s)
- Inès Limam
- PRF of Onco-Hematology, Faculty of medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
- Human genetics laboratory, Faculty of medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Ridha Ghali
- Research Laboratory of Toxicology and Environment, CAMU of Tunis, Tunis, LR12SP07, Tunisia
- Higher institute of Biotechnology of Sidi Thabet, Manouba University, Manouba, Tunisia
| | - Mohamed Abdelkarim
- PRF of Onco-Hematology, Faculty of medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
- Human genetics laboratory, Faculty of medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Anis Ouni
- Research Laboratory of Toxicology and Environment, CAMU of Tunis, Tunis, LR12SP07, Tunisia
| | - Manel Araoud
- Research Laboratory of Toxicology and Environment, CAMU of Tunis, Tunis, LR12SP07, Tunisia
| | - Mouaadh Abdelkarim
- College of General Education, University of Doha for Science & Technology, PO Box 24449, Doha, Qatar.
| | - Abderrazek Hedhili
- Research Laboratory of Toxicology and Environment, CAMU of Tunis, Tunis, LR12SP07, Tunisia
| | - Fatma Ben-Aissa Fennira
- PRF of Onco-Hematology, Faculty of medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
13
|
Rong D, Su Y, Jia D, Zeng Z, Yang Y, Wei D, Lu H, Cao Y. Experimentally validated oxidative stress -associated prognostic signatures describe the immune landscape and predict the drug response and prognosis of SKCM. Front Immunol 2024; 15:1387316. [PMID: 38660305 PMCID: PMC11039952 DOI: 10.3389/fimmu.2024.1387316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Background Skin Cutaneous Melanoma (SKCM) incidence is continually increasing, with chemotherapy and immunotherapy being among the most common cancer treatment modalities. This study aims to identify novel biomarkers for chemotherapy and immunotherapy response in SKCM and explore their association with oxidative stress. Methods Utilizing TCGA-SKCM RNA-seq data, we employed Weighted Gene Co-expression Network Analysis (WGCNA) and Protein-Protein Interaction (PPI) networks to identify six core genes. Gene co-expression analysis and immune-related analysis were conducted, and specific markers associated with oxidative stress were identified using Gene Set Variation Analysis (GSVA). Single-cell analysis revealed the expression patterns of Oxidative Stress-Associated Genes (OSAG) in the tumor microenvironment. TIDE analysis was employed to explore the association between immune therapy response and OSAG, while CIBERSORT was used to analyze the tumor immune microenvironment. The BEST database demonstrated the impact of the Oxidative Stress signaling pathway on chemotherapy drug resistance. Immunohistochemical staining and ROC curve evaluation were performed to assess the protein expression levels of core genes in SKCM and normal samples, with survival analysis utilized to determine their diagnostic value. Results We identified six central genes associated with SKCM metastasis, among which the expression of DSC2 and DSC3 involved in the oxidative stress pathway was closely related to immune cell infiltration. DSC2 influenced drug resistance in SKMC patients. Furthermore, downregulation of DSC2 and DSC3 expression enhanced the response of SKCM patients to immunotherapy. Conclusion This study identified two Oxidative Stress-Associated genes as novel biomarkers for SKCM. Additionally, targeting the oxidative stress pathway may serve as a new strategy in clinical practice to enhance SKCM chemotherapy and sensitivity.
Collapse
Affiliation(s)
- Dongyun Rong
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yushen Su
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou, China
| | - Dechao Jia
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhirui Zeng
- Department of anorectal surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yan Yang
- Department of Internal Medicine, The Third Affiliated Hospital of Guizhou Medical University, Duyun, Guizhou, China
| | - Dalong Wei
- Department of Burns, Plastic Surgery and Wound Repair, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Key Laboratory of Tumor Molecular Pathology of Baise, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Honguan Lu
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yu Cao
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
14
|
Mobisson SK, Iyanyi UL, Ehigiator BE, Ibe FU, Monye JB, Obembe AO. Elevated Levels of Gonadotrophic Hormones and Antioxidant Biomarker in Male Rats Following Administration of Hydromethanol Leaf Extract of Justicia secunda in Response to 2,4-Dinitrophenylhydrazine Induction. J Hum Reprod Sci 2024; 17:112-120. [PMID: 39091441 PMCID: PMC11290714 DOI: 10.4103/jhrs.jhrs_13_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 08/04/2024] Open
Abstract
Background 2,4-Dinitrophenylhydrazine induces testicular toxicity and can result in reproductive dysfunction in male rats. Aim This study investigated the effects of hydromethanolic leaf extract of Justicia secunda on phenylhydrazine (PHZ)-induced reproductive dysfunction in male Wistar rats. Settings and Design Twenty rats (90-170 g) were grouped into five (A-E) (n = 4) with the approval of the research ethics committee. Materials and Methods Group A (control) received 0.5 mL of normal saline, Groups B to E received PHZ, PHZ + Astymin (0.5 mL), PHZ + J. secunda (0.2 mg/kg) and PHZ + J. secunda (0.5 mg/kg), respectively. All animals in Groups B to E received 2 mg/kg PHZ intraperitoneally for 2 days, and thereafter, administration of Astymin and J. secunda commenced in Groups C, D and E for 14 days using gavage. Statistical Analysis Used The data were analysed using a one-way analysis of variance and the Bonferroni post hoc test. Results Follicle-stimulating hormone (FSH) decreased significantly in PHZ, PHZ + Astymin and PHZ + J. secunda (0.2 mg/kg) and increased significantly in PHZ + J. secunda (0.5 mg/kg) than control. Luteinising hormone (LH) and testosterone significantly (P < 0.001) reduced in treated groups than control. Total cholesterol, triglyceride, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol and very-low-density lipoprotein-cholesterol were significantly reduced in the treated groups than the control. Tumour necrosis factor alpha (TNF-α) significantly (P < 0.001) increased in treated groups than in control. Testicular glutathione (GSH), glutathione peroxidase, catalase and malondialdehyde significantly increased in extract-treated groups compared to control. Superoxide dismutase significantly decreased in PHZ-treated group than in the control. Conclusion PHZ administration caused testicular toxicity and altered biochemical markers, astymin treatment reduced male reproductive hormones, while J. secunda (0.5 mg/kg) increased FSH and LH, decreased TNFα levels and altered the concentration of testicular antioxidant markers. These alterations may be linked to the toxic effect of PHZ and could negatively affect spermatogenesis.
Collapse
Affiliation(s)
- Samuel Kelechi Mobisson
- Department of Human Physiology, Faculty of Basic Medical Sciences, Madonna University, Elele, Rivers, Nigeria
| | - Uchechukwu Loveth Iyanyi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Madonna University, Elele, Rivers, Nigeria
| | - Ben Enoluomen Ehigiator
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, Edo State University, Uzairue, Nigeria
| | - Fidelis U. Ibe
- Department of Human Physiology, Faculty of Basic Medical Sciences, Madonna University, Elele, Rivers, Nigeria
| | - Justin Bonaparte Monye
- Department of Human Physiology, Faculty of Basic Medical Sciences, Madonna University, Elele, Rivers, Nigeria
| | - Agona O. Obembe
- Department of Human Physiology, Faculty of Basic Medical Sciences, University of Calabar, Cross River, Nigeria
| |
Collapse
|
15
|
Susanti I, Pratiwi R, Rosandi Y, Hasanah AN. Separation Methods of Phenolic Compounds from Plant Extract as Antioxidant Agents Candidate. PLANTS (BASEL, SWITZERLAND) 2024; 13:965. [PMID: 38611494 PMCID: PMC11013868 DOI: 10.3390/plants13070965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
In recent years, discovering new drug candidates has become a top priority in research. Natural products have proven to be a promising source for such discoveries as many researchers have successfully isolated bioactive compounds with various activities that show potential as drug candidates. Among these compounds, phenolic compounds have been frequently isolated due to their many biological activities, including their role as antioxidants, making them candidates for treating diseases related to oxidative stress. The isolation method is essential, and researchers have sought to find effective procedures that maximize the purity and yield of bioactive compounds. This review aims to provide information on the isolation or separation methods for phenolic compounds with antioxidant activities using column chromatography, medium-pressure liquid chromatography, high-performance liquid chromatography, counter-current chromatography, hydrophilic interaction chromatography, supercritical fluid chromatography, molecularly imprinted technologies, and high-performance thin layer chromatography. For isolation or purification, the molecularly imprinted technologies represent a more accessible and more efficient procedure because they can be applied directly to the extract to reduce the complicated isolation process. However, it still requires further development and refinement.
Collapse
Affiliation(s)
- Ike Susanti
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Jl Raya Bandung Sumedang KM 21 r, Sumedang 45363, Indonesia
| | - Rimadani Pratiwi
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Jl Raya Bandung Sumedang KM 21 r, Sumedang 45363, Indonesia
| | - Yudi Rosandi
- Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| | - Aliya Nur Hasanah
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Jl Raya Bandung Sumedang KM 21 r, Sumedang 45363, Indonesia
- Drug Development Study Center, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| |
Collapse
|
16
|
Wu R, Zhang J, Zou G, Li S, Wang J, Li X, Xu J. Diabetes Mellitus and Thyroid Cancers: Risky Correlation, Underlying Mechanisms and Clinical Prevention. Diabetes Metab Syndr Obes 2024; 17:809-823. [PMID: 38380275 PMCID: PMC10878320 DOI: 10.2147/dmso.s450321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
The incidences of thyroid cancer and diabetes are rapidly increasing worldwide. The relationship between thyroid cancer and diabetes is a popular topic in medicine. Increasing evidence has shown that diabetes increases the risk of thyroid cancer to a certain extent. This mechanism may be related to genetic factors, abnormal thyroid-stimulating hormone secretion, oxidative stress injury, hyperinsulinemia, elevated insulin-like growth factor-1 levels, abnormal secretion of adipocytokines, and increased secretion of inflammatory factors and chemokines. This article reviews the latest research progress on the relationship between thyroid cancer and diabetes, including the association between diabetes and the risk of developing thyroid cancer, its underlying mechanisms, and potential anti-thyroid cancer effects of hypoglycemic drugs. It providing novel strategies for the prevention, treatment, and improving the prognosis of thyroid cancer.
Collapse
Affiliation(s)
- Rongqian Wu
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, People’s Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, People’s Republic of China
| | - Junping Zhang
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, People’s Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, People’s Republic of China
| | - Guilin Zou
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, People’s Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, People’s Republic of China
| | - Shanshan Li
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Jinying Wang
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Xiaoxinlei Li
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, People’s Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, People’s Republic of China
| |
Collapse
|
17
|
Yang W, Lv Y, Ma T, Wang N, Chen P, Liu Q, Yan H. Exploring the association between inflammatory biomarkers and gastric cancer development: A two-sample mendelian randomization analysis. Medicine (Baltimore) 2024; 103:e36458. [PMID: 38306562 PMCID: PMC10843383 DOI: 10.1097/md.0000000000036458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/13/2023] [Indexed: 02/04/2024] Open
Abstract
This study aimed to elucidate the potential causative links between inflammatory biomarkers and gastric cancer risk via a two-sample Mendelian randomization approach. Leveraging genome-wide association study (GWAS) data, we conducted a two-sample Mendelian randomization analysis. Instrumental variable selection for inflammatory markers - namely, tissue factor, monocyte chemotactic protein-1, E-selectin, interleukin 6 receptor, and fatty acid-binding protein 4 - was informed by SNP data from the IEU database. Strongly associated SNPs served as instrumental variables. We applied a suite of statistical methods, including Inverse Variance Weighted (IVW), Weighted Median Estimator (WME), MR-Egger, and mode-based estimates, to compute the odds ratios (ORs) that articulate the impact of these markers on gastric cancer susceptibility. The IVW method revealed that the interleukin 6 receptor was inversely correlated with gastric cancer progression (OR = 0.86, 95% CI = 0.74-0.99, P = .03), whereas fatty acid-binding protein 4 was found to elevate the risk (OR = 1.21, 95% CI = 1.05-1.39, P = .03). Instrumental variables comprised 5, 4, 7, 2, and 3 SNPs respectively. Convergent findings from WME, MR-Egger, and mode-based analyses corroborated these associations. Sensitivity checks, including heterogeneity, horizontal pleiotropy assessments, and leave-one-out diagnostics, affirmed the robustness and reliability of our instruments across diverse gastric malignancy tissues without substantial bias. Our research suggests that the interleukin 6 receptor potentially mitigates, while fatty acid-binding protein 4 may contribute to the pathogenesis of gastric cancer (GC). Unraveling the intricate biological interplay between inflammation and oncogenesis offers valuable insights for preemptive strategies and therapeutic interventions in gastric malignancy management.
Collapse
Affiliation(s)
- Wenjing Yang
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ye Lv
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Tao Ma
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ningju Wang
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ping Chen
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Quanxia Liu
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hui Yan
- General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
18
|
Deng H, Liu J, Xiao Y, Wu JL, Jiao R. Possible Mechanisms of Dark Tea in Cancer Prevention and Management: A Comprehensive Review. Nutrients 2023; 15:3903. [PMID: 37764687 PMCID: PMC10534731 DOI: 10.3390/nu15183903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Tea is one of the most popular drinks in the world. Dark tea is a kind of post-fermented tea with unique sensory characteristics that is produced by the special fermentation of microorganisms. It contains many bioactive substances, such as tea polyphenols, theabrownin, tea polysaccharides, etc., which have been reported to be beneficial to human health. This paper reviewed the latest research on dark tea's potential in preventing and managing cancer, and the mechanisms mainly involved anti-oxidation, anti-inflammation, inhibiting cancer cell proliferation, inducing cancer cell apoptosis, inhibiting tumor metastasis, and regulating intestinal flora. The purpose of this review is to accumulate evidence on the anti-cancer effects of dark tea, the corresponding mechanisms and limitations of dark tea for cancer prevention and management, the future prospects, and demanding questions about dark tea's possible contributions as an anti-cancer adjuvant.
Collapse
Affiliation(s)
- Huilin Deng
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, 601 Huangpu Road, Guangzhou 510632, China; (H.D.); (J.L.)
| | - Jia Liu
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, 601 Huangpu Road, Guangzhou 510632, China; (H.D.); (J.L.)
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Macau, China;
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China;
| | - Rui Jiao
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, 601 Huangpu Road, Guangzhou 510632, China; (H.D.); (J.L.)
| |
Collapse
|
19
|
Audebert M, Assmann AS, Azqueta A, Babica P, Benfenati E, Bortoli S, Bouwman P, Braeuning A, Burgdorf T, Coumoul X, Debizet K, Dusinska M, Ertych N, Fahrer J, Fetz V, Le Hégarat L, López de Cerain A, Heusinkveld HJ, Hogeveen K, Jacobs MN, Luijten M, Raitano G, Recoules C, Rundén-Pran E, Saleh M, Sovadinová I, Stampar M, Thibol L, Tomkiewicz C, Vettorazzi A, Van de Water B, El Yamani N, Zegura B, Oelgeschläger M. New approach methodologies to facilitate and improve the hazard assessment of non-genotoxic carcinogens-a PARC project. FRONTIERS IN TOXICOLOGY 2023; 5:1220998. [PMID: 37492623 PMCID: PMC10364052 DOI: 10.3389/ftox.2023.1220998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Carcinogenic chemicals, or their metabolites, can be classified as genotoxic or non-genotoxic carcinogens (NGTxCs). Genotoxic compounds induce DNA damage, which can be detected by an established in vitro and in vivo battery of genotoxicity assays. For NGTxCs, DNA is not the primary target, and the possible modes of action (MoA) of NGTxCs are much more diverse than those of genotoxic compounds, and there is no specific in vitro assay for detecting NGTxCs. Therefore, the evaluation of the carcinogenic potential is still dependent on long-term studies in rodents. This 2-year bioassay, mainly applied for testing agrochemicals and pharmaceuticals, is time-consuming, costly and requires very high numbers of animals. More importantly, its relevance for human risk assessment is questionable due to the limited predictivity for human cancer risk, especially with regard to NGTxCs. Thus, there is an urgent need for a transition to new approach methodologies (NAMs), integrating human-relevant in vitro assays and in silico tools that better exploit the current knowledge of the multiple processes involved in carcinogenesis into a modern safety assessment toolbox. Here, we describe an integrative project that aims to use a variety of novel approaches to detect the carcinogenic potential of NGTxCs based on different mechanisms and pathways involved in carcinogenesis. The aim of this project is to contribute suitable assays for the safety assessment toolbox for an efficient and improved, internationally recognized hazard assessment of NGTxCs, and ultimately to contribute to reliable mechanism-based next-generation risk assessment for chemical carcinogens.
Collapse
Affiliation(s)
- Marc Audebert
- INRAE: Toxalim, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Ann-Sophie Assmann
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R) and Department Food Safety, BfR: German Federal Institute for Risk Assessment, Berlin, Germany
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, UNAV: University of Navarra, Pamplona, Spain
| | - Pavel Babica
- RECETOX: RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Emilio Benfenati
- IRFMN: Istituto di Ricerche Farmacologiche Mario Negri—IRCCS, Milan, Italy
| | - Sylvie Bortoli
- INSERM: INSERM UMR-S 1124 T3S—Université Paris Cité, Paris, France
| | - Peter Bouwman
- UL-LACDR: Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Albert Braeuning
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R) and Department Food Safety, BfR: German Federal Institute for Risk Assessment, Berlin, Germany
| | - Tanja Burgdorf
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R) and Department Food Safety, BfR: German Federal Institute for Risk Assessment, Berlin, Germany
| | - Xavier Coumoul
- INSERM: INSERM UMR-S 1124 T3S—Université Paris Cité, Paris, France
| | - Kloé Debizet
- INSERM: INSERM UMR-S 1124 T3S—Université Paris Cité, Paris, France
| | - Maria Dusinska
- Health Effects Laboratory, NILU: The Climate and Environmental Research Institute, Kjeller, Norway
| | - Norman Ertych
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R) and Department Food Safety, BfR: German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jörg Fahrer
- Department of Chemistry, RPTU: Division of Food Chemistry and Toxicology, Kaiserslautern, Germany
| | - Verena Fetz
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R) and Department Food Safety, BfR: German Federal Institute for Risk Assessment, Berlin, Germany
| | - Ludovic Le Hégarat
- ANSES: French Agency for Food, Environmental and Occupational Health and Safety, Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, UNAV: University of Navarra, Pamplona, Spain
| | - Harm J. Heusinkveld
- RIVM: National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Kevin Hogeveen
- ANSES: French Agency for Food, Environmental and Occupational Health and Safety, Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Miriam N. Jacobs
- Radiation, Chemical and Environmental Hazards, UKHSA: UK Health Security Agency, Chilton, Oxfordshire, United Kingdom
| | - Mirjam Luijten
- RIVM: National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Giuseppa Raitano
- IRFMN: Istituto di Ricerche Farmacologiche Mario Negri—IRCCS, Milan, Italy
| | - Cynthia Recoules
- INRAE: Toxalim, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Elise Rundén-Pran
- Health Effects Laboratory, NILU: The Climate and Environmental Research Institute, Kjeller, Norway
| | - Mariam Saleh
- ANSES: French Agency for Food, Environmental and Occupational Health and Safety, Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Iva Sovadinová
- RECETOX: RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Martina Stampar
- Department of Genetic Toxicology and Cancer Biology, NIB: National Institute of Biology, Ljubljana, Slovenia
| | - Lea Thibol
- Department of Chemistry, RPTU: Division of Food Chemistry and Toxicology, Kaiserslautern, Germany
| | | | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, UNAV: University of Navarra, Pamplona, Spain
| | - Bob Van de Water
- UL-LACDR: Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Naouale El Yamani
- Health Effects Laboratory, NILU: The Climate and Environmental Research Institute, Kjeller, Norway
| | - Bojana Zegura
- Department of Genetic Toxicology and Cancer Biology, NIB: National Institute of Biology, Ljubljana, Slovenia
| | - Michael Oelgeschläger
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R) and Department Food Safety, BfR: German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|