1
|
Begum F, Nahid KL, Jesmin T, Mazumder MW, Rukunuzzaman M. Could Urinary Copper/Zinc Ratio Be a Newer Tool to Replace 24-Hour Urinary Copper Excretion for Diagnosing Wilson Disease in Children? Pediatr Gastroenterol Hepatol Nutr 2024; 27:53-61. [PMID: 38249640 PMCID: PMC10796261 DOI: 10.5223/pghn.2024.27.1.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 10/25/2023] [Indexed: 01/23/2024] Open
Abstract
Purpose Although the 24-hours urinary copper excretion is useful for the diagnosis of Wilson disease (WD), there are practical difficulties in the accurate and timed collection of urine samples. The purpose of this study was to verify if the spot morning urinary Copper/ Zinc (Cu/Zn) ratio could be used as a replacement parameter of 24-hours urinary copper excretion in the diagnosis of WD. Methods A cross-sectional study was conducted at the Department of Pediatric Gastroenterology and Nutrition, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh, from June 2019 to May 2021 on 67 children over three years of age who presented with liver disease. Twenty-seven children who fulfilled the inclusion criteria for WD were categorized into the test group, and the remaining forty children were considered to have non-Wilsonian liver disease and were categorized into the control group. Along with other laboratory investigations, spot morning urinary samples were estimated for the urinary Cu/Zn ratio in all patients and were compared to the 24-hour urinary copper excretion. The diagnostic value of the Cu/Zn ratio was then analyzed. Results Correlation of spot morning urinary Cu/Zn ratio with 24-hours urinary copper excretion was found to be significant (r=0.60). The area under ROC curve with 95% confidence interval of morning urinary Cu/Zn ratio measured using 24-hours urine sample was 0.84 (standard error, 0.05; p<0.001). Conclusion Spot morning urinary Cu/Zn ratio seems to be a promising parameter for the replacement of 24-hours urinary copper excretion in the diagnosis of WD.
Collapse
Affiliation(s)
- Fahmida Begum
- Department of Paediatric Gastroenterology and Nutrition, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Khan Lamia Nahid
- Department of Paediatric Gastroenterology and Nutrition, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Tahmina Jesmin
- Department of Paediatric Nephrology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Md. Wahiduzzaman Mazumder
- Department of Paediatric Gastroenterology and Nutrition, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Md. Rukunuzzaman
- Department of Paediatric Gastroenterology and Nutrition, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| |
Collapse
|
2
|
Copper Toxicity Is Not Just Oxidative Damage: Zinc Systems and Insight from Wilson Disease. Biomedicines 2021; 9:biomedicines9030316. [PMID: 33804693 PMCID: PMC8003939 DOI: 10.3390/biomedicines9030316] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Essential metals such as copper (Cu) and zinc (Zn) are important cofactors in diverse cellular processes, while metal imbalance may impact or be altered by disease state. Cu is essential for aerobic life with significant functions in oxidation-reduction catalysis. This redox reactivity requires precise intracellular handling and molecular-to-organismal levels of homeostatic control. As the central organ of Cu homeostasis in vertebrates, the liver has long been associated with Cu storage disorders including Wilson Disease (WD) (heritable human Cu toxicosis), Idiopathic Copper Toxicosis and Endemic Tyrolean Infantile Cirrhosis. Cu imbalance is also associated with chronic liver diseases that arise from hepatitis viral infection or other liver injury. The labile redox characteristic of Cu is often discussed as a primary mechanism of Cu toxicity. However, work emerging largely from the study of WD models suggests that Cu toxicity may have specific biochemical consequences that are not directly attributable to redox activity. This work reviews Cu toxicity with a focus on the liver and proposes that Cu accumulation specifically impacts Zn-dependent processes. The prospect that Cu toxicity has specific biochemical impacts that are not entirely attributable to redox may promote further inquiry into Cu toxicity in WD and other Cu-associated disorders.
Collapse
|
3
|
Talpur S, Afridi HI, Kazi TG, Talpur FN. Interaction of Lead with Calcium, Iron, and Zinc in the Biological Samples of Malnourished Children. Biol Trace Elem Res 2018; 183:209-217. [PMID: 28861860 DOI: 10.1007/s12011-017-1141-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/21/2017] [Indexed: 01/07/2023]
Abstract
Interaction between toxic and essential elements is of particular interest, because the deficiency of essential element can dramatically increase the absorption rate of toxic metals inside the body. This study was conducted to evaluate the possible correlation of lead (Pb) with calcium (Ca), iron (Fe), and zinc (Zn) in biological samples (whole blood and scalp hair) of malnourished children (MNC). For comparative purposes, age-matched, well-nourished children (WNC) were selected. The concentrations of understudy elements were analyzed by atomic absorption spectrophotometry after microwave acid digestion. The accuracy of the methodology, as well as its its validity and efficiency, was checked through certified reference material of whole blood and scalp hair. The result indicates that the MNC have a twofold higher level of Pb, while the levels of essential elements (Ca, Fe, and Zn) were onefold to twofold lower as compared to the WNC (p < 0.05). Significant negative correlations of Pb with Ca, Fe, and Zn were found in the studied malnourished population at p < 0.05. Further research studies are required to elucidate the role of these metals and the mechanism of interaction inside the body.
Collapse
Affiliation(s)
- Sehrish Talpur
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Hassan I Afridi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan.
| | - Tasneem G Kazi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Farah Naz Talpur
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| |
Collapse
|
4
|
|
5
|
Piekuse L, Kreile M, Zarina A, Steinberga Z, Sondore V, Keiss J, Lace B, Krumina A. Association between inherited monogenic liver disorders and chronic hepatitis C. World J Hepatol 2014; 6:92-97. [PMID: 24575168 PMCID: PMC3935058 DOI: 10.4254/wjh.v6.i2.92] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/16/2013] [Accepted: 01/16/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the frequencies of mutations that cause inherited monogenic liver disorders in patients with chronic hepatitis C.
METHODS: This study included 86 patients with chronic hepatitis C (55 men, 31 women; mean age at diagnosis, 38.36 ± 14.52 years) who had undergone antiviral therapy comprising pegylated interferon and ribavirin. Viral load, biochemical parameter changes, and liver biopsy morphological data were evaluated in all patients. The control group comprised 271 unrelated individuals representing the general population of Latvia for mutation frequency calculations. The most frequent mutations that cause inherited liver disorders [gene (mutation): ATP7B (H1069Q), HFE (C282Y, H63D), UGT1A1 (TA)7, and SERPINA1 (PiZ)] were detected by polymerase chain reaction (PCR), bidirectional PCR allele-specific amplification, restriction fragment length polymorphism analysis, and sequencing.
RESULTS: The viral genotype was detected in 80 of the 86 patients. Viral genotypes 1, 2, and 3 were present in 61 (76%), 7 (9%), and 12 (15%) patients, respectively. Among all 86 patients, 50 (58%) reached an early viral response and 70 (81%) reached a sustained viral response. All 16 patients who did not reach a sustained viral response had viral genotype 1. Case-control analysis revealed a statistically significant difference in only the H1069Q mutation between patients and controls (patients, 0.057; controls, 0.012; odds ratio, 5.514; 95%CI: 1.119-29.827, P = 0.022). However, the H1069Q mutation was not associated with antiviral treatment outcomes or biochemical indices. The (TA) 7 mutation of the UGT1A1 gene was associated with decreased ferritin levels (beta regression coefficient = -295.7, P = 0.0087).
CONCLUSION: Genetic mutations that cause inherited liver diseases in patients with hepatitis C should be studied in detail.
Collapse
|
6
|
Gray LW, Peng F, Molloy SA, Pendyala VS, Muchenditsi A, Muzik O, Lee J, Kaplan JH, Lutsenko S. Urinary copper elevation in a mouse model of Wilson's disease is a regulated process to specifically decrease the hepatic copper load. PLoS One 2012; 7:e38327. [PMID: 22802922 PMCID: PMC3390108 DOI: 10.1371/journal.pone.0038327] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/03/2012] [Indexed: 12/19/2022] Open
Abstract
Body copper homeostasis is regulated by the liver, which removes excess copper
via bile. In Wilson's disease (WD), this function is disrupted due to
inactivation of the copper transporter ATP7B resulting in hepatic copper
overload. High urinary copper is a diagnostic feature of WD linked to liver
malfunction; the mechanism behind urinary copper elevation is not fully
understood. Using Positron Emission Tomography-Computed Tomography (PET-CT)
imaging of live Atp7b−/− mice at
different stages of disease, a longitudinal metal analysis, and characterization
of copper-binding molecules, we show that urinary copper elevation is a specific
regulatory process mediated by distinct molecules. PET-CT and atomic absorption
spectroscopy directly demonstrate an age-dependent decrease in the capacity of
Atp7b−/− livers to accumulate
copper, concomitant with an increase in urinary copper. This reciprocal
relationship is specific for copper, indicating that cell necrosis is not the
primary cause for the initial phase of metal elevation in the urine. Instead,
the urinary copper increase is associated with the down-regulation of the
copper-transporter Ctr1 in the liver and appearance of a 2 kDa Small Copper
Carrier, SCC, in the urine. SCC is also elevated in the urine of the
liver-specific Ctr1−/− knockouts, which
have normal ATP7B function, suggesting that SCC is a normal metabolite carrying
copper in the serum. In agreement with this hypothesis, partially purified
SCC-Cu competes with free copper for uptake by Ctr1. Thus, hepatic
down-regulation of Ctr1 allows switching to an SCC-mediated removal of copper
via kidney when liver function is impaired. These results demonstrate that the
body regulates copper export through more than one mechanism; better
understanding of urinary copper excretion may contribute to an improved
diagnosis and monitoring of WD.
Collapse
Affiliation(s)
- Lawrence W. Gray
- Department of Physiology, Johns Hopkins
University, School of Medicine, Baltimore, Maryland, United States of
America
| | - Fangyu Peng
- Department of Radiology, University of Texas
Southwestern Medical Center, Dallas, Texas, United States of America
| | - Shannon A. Molloy
- Department of Biochemistry and Molecular
Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of
America
| | - Venkata S. Pendyala
- Department of Physiology, Johns Hopkins
University, School of Medicine, Baltimore, Maryland, United States of
America
| | - Abigael Muchenditsi
- Department of Physiology, Johns Hopkins
University, School of Medicine, Baltimore, Maryland, United States of
America
| | - Otto Muzik
- Carman and Ann Adams Department of Pediatrics
and Department of Radiology, Wayne State University, School of Medicine,
Detroit, Michigan, United States of America
| | - Jaekwon Lee
- Redox Biology Center, Department of
Biochemistry, University of Nebraska, Lincoln, Nebraska, United States of
America
| | - Jack H. Kaplan
- Department of Biochemistry and Molecular
Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of
America
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins
University, School of Medicine, Baltimore, Maryland, United States of
America
- * E-mail:
| |
Collapse
|
7
|
Kolachi NF, Kazi TG, Afridi HI, Kazi N, Kandhro GA, Shah AQ, Baig JA, Wadhwa SK, Khan S, Shah F, Jamali MK, Arain MB. Distribution of copper, iron, and zinc in biological samples (scalp hair, serum, blood, and urine) of Pakistani viral hepatitis (A-E) patients and controls. Biol Trace Elem Res 2011; 143:116-30. [PMID: 20872092 DOI: 10.1007/s12011-010-8852-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 09/09/2010] [Indexed: 12/17/2022]
Abstract
The aim of the present study was to compare the level of copper (Cu), iron (Fe) and zinc (Zn) in biological samples (serum, blood, urine, and scalp hair) of patients suffering from different viral hepatitis (A, B, C, D, and E; n = 521) of both gender age ranged 31-45 years. For comparative study, 255 age-matched control subjects, of both genders residing in the same city were selected as referents. The elements in the biological samples were analyzed by flame atomic absorption spectrophotometry, prior to microwave-assisted acid digestion. The validity and accuracy of the methodology was checked by using certified reference materials (CRMs) and with those values obtained by conventional wet acid digestion method on same CRMs. The results of this study showed that the mean values of Cu and Fe were higher in blood, sera, and scalp hair samples of hepatitis patients, while Zn level was found to be lower than age-matched control subjects. The urinary levels of these elements were found to be higher in the hepatitis patients than in the age-matched healthy controls (p < 0.05). These results are consistent with literature-reported data, confirming that the deficiency of zinc and hepatic iron and copper overload can directly cause lipid peroxidation and eventually hepatic damage.
Collapse
Affiliation(s)
- Nida Fatima Kolachi
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Sindh, Pakistan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Shah F, Kazi TG, Afridi HI, Kazi N, Baig JA, Shah AQ, Khan S, Kolachi NF, Wadhwa SK. Evaluation of status of trace and toxic metals in biological samples (scalp hair, blood, and urine) of normal and anemic children of two age groups. Biol Trace Elem Res 2011; 141:131-49. [PMID: 20526751 DOI: 10.1007/s12011-010-8736-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 05/14/2010] [Indexed: 10/19/2022]
Abstract
Anemia affects a substantial portion of the world's population, provoking severe health problems as well as important economic losses to the region in which this condition is found. This study was designed to compare the levels of essential trace and toxic elements in scalp hair, blood, and urine samples of anemic children (n = 132) with age range 1-5 and 6-10 years of both genders. For a comparative study, 134 non-anemic age- and sex-matched children as control subjects, residing in the same city, were selected. The metals in the biological samples were measured by flame atomic absorption spectrophotometry/electrothermal atomic absorption spectrometry prior to microwave-assisted acid digestion. The proposed method was validated using certified reference samples of hair, blood, and urine. The results indicated significantly lower levels of iron, copper, and zinc in the biological samples as compared to the control children of both genders (p = 0.01-0.008). The mean values of lead and cadmium were significantly high in all three biological samples of anemic children as compared to non-anemic children of both age groups (p = 0.005-0.001). The ratios of essential metal to toxic metals in the biological samples of anemic children of both age groups were significantly lower than that of controls. Deficiency of essential trace metals and high level of toxic metals may play a role in the development of anemia in the subjects under study.
Collapse
Affiliation(s)
- Faheem Shah
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|