1
|
Shiri H, Sagha A, Nasri H, Mehdeipour S, Fooladi S, Mehrabani M, Farhadi S, Kharazmi S, Nematollahi MH. Lithium and zinc levels along with oxidative status in myocardial infarction: A case-control study. Heliyon 2023; 9:e21875. [PMID: 38027575 PMCID: PMC10658302 DOI: 10.1016/j.heliyon.2023.e21875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/15/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Background Coronary artery disease (CAD) and myocardial infarction (MI) are the most prevalent diseases globally. While several risk factors for MI are well assessed, the influence of trace elements on MI has not been thoroughly studied. This study aimed to evaluate lithium (Li) and zinc (Zn) levels in MI patients and healthy control and assess their relationship with oxidative stress (OS) parameters, such as nitric oxide (NO) and total antioxidant capacity (TAC). Methods This case-control study was performed on 182 patients with MI and 83 healthy subjects at Shafa Hospital in Kerman, Iran. MI patients were divided into two groups based on the angiography results: those with coronary artery block above 50 % (CAB >50 %, n = 92) and those with coronary artery block below 50 % (CAB <50 %, n = 90). A flame atomic absorption spectrometer was used to detect Li and Zn levels, and biochemical indices were measured by an autoanalyzer. Also, ferric reducing antioxidant power assay and the Griess method were used to measure the amounts of NO and TAC. Results The levels of TAC and Li were significantly higher in the control group than in the patient groups (in both CAB >50 % and CAB <50 % groups). Furthermore, in the CAB <50 % group, TAC and Li levels were significantly higher than in the CAB >50 % group. In the Zn levels evaluation, higher concentration was seen in the CAB >50 % group compared to the CAB <50 % group (P < 0.05). Moreover, Zn and NO levels were significantly higher in both CAB groups compared to controls. In continue, Li levels had a positive association with TAC and ejection fraction percentage (EF%) as well as a negative association with NO levels and Zn levels had a significant positive association with NO and a negative association with TAC. In logistic regression analysis, Li, TAC, and high-density lipoprotein-cholesterol significantly decreased the odds ratio (OR) of MI, whereas Zn, NO, total cholesterol, triglyceride, low-density lipoprotein-cholesterol, and high-sensitivity C-reactive protein (hs-CRP) significantly increased the OR of MI. Furthermore, the area under the curve (AUC) analysis indicated that Li had the highest AUC for the diagnosis of CAB >50 % (Li < 167 ng/mL), and Zn ≥ 1810 μg/mL increased disease severity. Conclusion Our investigation revealed that Li had a protective effect against CAD by decreasing OS and increasing EF%. However, Zn at concentrations higher than 1810 μg/mL was found to be cytotoxic and increased the risk of MI through increased OS. Taken togather, it could be concluded that Li supplementation may decrease the risk of CAD.
Collapse
Affiliation(s)
- Hamidreza Shiri
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Arian Sagha
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamidreza Nasri
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, and Shafa Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Sobhan Mehdeipour
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Saba Fooladi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Soudabeh Farhadi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sharareh Kharazmi
- Department of Pediatrics, Faculty of Medicine, Islamic Azad University, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Applied Cellular and Molecular Research Center, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Deng P, Qiu S, Liao F, Jiang Y, Zheng C, Zhu Q. Contusion concomitant with ischemia injury aggravates skeletal muscle necrosis and hinders muscle functional recovery. Exp Biol Med (Maywood) 2022; 247:1577-1590. [PMID: 35775612 PMCID: PMC9554171 DOI: 10.1177/15353702221102376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Contusion concomitant with ischemia injury to skeletal muscles is common in civilian and battlefield trauma. Despite their clinical importance, few experimental studies on these injuries are reported. The present study established a rat skeletal muscle contusion concomitant with ischemia injury model to identify skeletal muscle alterations compared with contusion injury or ischemia injury. Macroscopic and microscopic morphological evaluation showed that contusion concomitant with ischemia injury aggravated muscle edema and hematoxylin-eosin (HE) injury score at 24 h postinjury. Serum creatine kinase (CK) and lactate dehydrogenase (LDH) levels, together with gastrocnemius muscle (GM) tumor necrosis factor-alpha (TNF-α) content elevated at 24 h postinjury too. During the 28-day follow-up, electrophysiological and contractile impairment was more severe in the contusion concomitant with ischemia injury group. In addition, contusion concomitant with ischemia injury decreased the percentage of larger (600-3000 μm2) fibers and increased the fibrotic area and collagen I proportion in the GM. Smaller proportions of Pax7+ and MyoD+ satellite cells (SCs) were observed in the contusion concomitant with ischemia injury group at 7 days postinjury. In conclusion, contusion concomitant with ischemia injury to skeletal muscle not only aggravates early muscle fiber necrosis but also hinders muscle functional recovery by impairing SC differentiation and exacerbating fibrosis during skeletal muscle repair.
Collapse
Affiliation(s)
- Peijun Deng
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China,Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Shuai Qiu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China,Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Fawei Liao
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China,Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Yifei Jiang
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China,Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Canbin Zheng
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China,Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Qingtang Zhu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China,Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China,Qingtang Zhu.
| |
Collapse
|
3
|
The effects of amantadine on lung tissue in lower limb ischemia/reperfusion injury model in rats. TURK GOGUS KALP DAMAR CERRAHISI DERGISI-TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2021; 29:77-83. [PMID: 33768984 PMCID: PMC7970070 DOI: 10.5606/tgkdc.dergisi.2021.19884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/04/2020] [Indexed: 11/21/2022]
Abstract
Background
This study aims to evaluate the effect of amantadine on lung tissue of after lower limb ischemia/reperfusion injury in rats.
Methods
A total of 24 Wistar rats were divided into four equal groups including six rats in each: sham group (Group S), amantadine group (Group A), ischemia/reperfusion group (Group I/R), and ischemia/reperfusion + amantadine group (Group I/R-A). All groups underwent a midline abdominal incision. In Groups I/R and I/R-A, the infrarenal abdominal aorta was clamped for 120 min and, then, reperfused for 120 min after removal of the clamp. Amantadine hydrochloride 45 mg/kg was administered intraperitoneally to the rats of Groups A and Group I/R-A 15 min before surgery. At the end of reperfusion period (240 min), all rats were sacrificed, and their lung tissues were obtained. Lung tissue catalase and superoxide dismutase activities and glutathione S-transferase and malondialdehyde levels were analyzed. Lung tissues were examined histopathologically.
Results
Catalase activity was lower in Groups A, I/R, and I/R-A compared to Group S. Superoxide dismutase activity was higher in Group I/R than Group S. Superoxide dismutase activity in Groups I/R-A and A decreased, compared to Groups S and I/R. Glutathione S-transferase levels decreased in Groups I/R and A, compared to Group S. Glutathione S-transferase levels in Group I/R-A were higher than Groups I/R and A. The highest level of malondialdehyde was found in Group I/R and the lowest level was found in Group I/R-A. According to histopathological examination, infiltration scores were significantly lower in Group S than Groups I/R and I/R-A (p=0.009 and p=0.011, respectively). The alveolar wall thickening scores in Group I/R were also significantly higher than Groups S and Group A (p=0.001 and p=0.001, respectively).
Conclusion
Lung tissue can be affected histopathologically by ischemia/ reperfusion injury and this injury can be reversed by amantadine administration.
Collapse
|
4
|
Akbari G. Role of Zinc Supplementation on Ischemia/Reperfusion Injury in Various Organs. Biol Trace Elem Res 2020; 196:1-9. [PMID: 31828721 DOI: 10.1007/s12011-019-01892-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Abstract
Ischemia-reperfusion (I/R) injury is a serious condition which is associated with myocardial infarction, stroke, acute kidney injury, trauma, circulatory arrest, sickle cell disease, and sleep apnea and can lead to high morbidity and mortality. Salts of zinc (Zn) are commonly used by humans and have protective effects against gastric, renal, hepatic, muscle, myocardial, or neuronal ischemic injury. The present review evaluates molecular mechanisms underlying the protective effects of Zn supplement against I/R injury. Data of this review have been collected from the scientific articles published in databases such as Science Direct, Scopus, PubMed, and Scientific Information Database from 1991 to 2019. Zn supplementation increased the decreased parameters including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione (GSH), metallothionein (MT), protein sulfhydryl (P-SH), and nuclear factor-erythroid 2-related factor-2 (Nrf2) expression and decreased the increased elements such as endoplasmic reticulum (ER) stress, mitochondrial permeability transition pore (mPTP) opening, malondialdehyde (MDA), serum level of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and microRNAs-(122 and 34a), apoptotic factors, and histopathological changes. Zn also increases phosphatidylinositol 3-kinase (PI3K)/Akt and glycogen synthase kinase-3β (GSK-3β) phosphorylation and preserves protein kinase C isoforms. It is suggested that Zn can be administered before elective surgeries for prevention of side effects of I/R injury.
Collapse
Affiliation(s)
- Ghaidafeh Akbari
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
5
|
Wen M, Wu B, Zhao H, Liu G, Chen X, Tian G, Cai J, Jia G. Effects of Dietary Zinc on Carcass Traits, Meat Quality, Antioxidant Status, and Tissue Zinc Accumulation of Pekin Ducks. Biol Trace Elem Res 2019; 190:187-196. [PMID: 30343482 DOI: 10.1007/s12011-018-1534-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022]
Abstract
This study investigated the effects of dietary zinc on carcass traits, meat quality, antioxidant capacity, and tissue zinc accumulation of Pekin ducks. A total of 768 1-day-old Pekin ducks were randomly allocated to six dietary treatments and penned in groups of 16 with 8 pens per treatment. Ducks were fed a basal corn-soybean meal diet supplemented with graded levels of zinc sulfate (0, 15, 30, 60, 120, 240 mg zinc/kg) for 35 days. The slaughter weight, carcass weight, eviscerated weight, and breast and leg muscle weight of Pekin ducks were increased with increasing dietary zinc levels (P < 0.05). Zinc supplementation increased the pH value at 24-h postmortem and the intramuscular fat (IMF) (P < 0.05), but decreased the lightness value, drip loss, and shear force in breast meat of ducks (P < 0.05). Increasing dietary zinc increased the activity of superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione reductase (GR), catalase (CAT), and the content of glutathione (GSH), as well as decreased the malondialdehyde (MDA) level in breast muscle (P < 0.05). RT-qPCR analysis demonstrated that supplemental zinc notably enhanced the transcription of SOD, GPX, GR, CAT, and nuclear factor erythroid 2-related factor 2 (Nrf2) (P < 0.05). Meanwhile, zinc accumulation in plasma, breast muscle, liver, and tibia were linearly increased with increasing zinc supplementation (P < 0.05). These results indicated that zinc supplementation could improve carcass traits and meat quality and increase the activities and mRNA levels of antioxidant enzymes in breast muscle of Pekin duck. Base on broken-line regression analysis that 91.32 mg/kg of dietary zinc was suggested for optimal carcass traits, meat quality, antioxidant capacity, and zinc deposition of Pekin duck.
Collapse
Affiliation(s)
- Min Wen
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
- Tibet Vocational Technical College, Lasa, 850000, China
| | - Bing Wu
- Chelota Group, Guanghan, 618300, China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Guangmang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xiaoling Chen
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Jingyi Cai
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, No 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
6
|
Protective effects of mitochondrion-targeted peptide SS-31 against hind limb ischemia-reperfusion injury. J Physiol Biochem 2018; 74:335-343. [PMID: 29589186 DOI: 10.1007/s13105-018-0617-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 02/16/2018] [Indexed: 12/11/2022]
Abstract
Hind limb ischemia-reperfusion injury is an important pathology in vascular surgery. Reactive oxygen species are thought to be involved in the pathogenesis of hind limb ischemia-reperfusion injury. SS-31, which belongs to a family of mitochondrion-targeted peptide antioxidants, was shown to reduce mitochondrial reactive oxygen species production. In this study, we investigated whether the treatment of SS-31 could protect hind limb from ischemia-reperfusion injury in a mouse model. The results showed that SS-31 treatment either before or after ischemia exhibited similar protective effects. Histopathologically, SS-31 treatment prevented the IR-induced histological deterioration compared with the corresponding vehicle control. SS-31 treatment diminished oxidative stress revealed by the reduced malondialdehyde level and increased activities and protein levels of Sod and catalase. Cellular ATP contents and mitochondrial membrane potential increased and the level of cytosolic cytC was decreased after SS-31 treatment in this IR model, demonstrating that mitochondria were protected. The IR-induced increase of levels of inflammatory factors, such as Tnf-α and Il-1β, was prevented by SS-31 treatment. In agreement with the reduced cytosolic cytC, cleaved-caspase 3 was kept at a very low level after SS-31 treatment. Overall, the effect of SS-31 treatment before ischemia is mildly more effective than that after ischemia. In conclusion, our results demonstrate that SS-31 confers a protective effect in the mouse model of hind limb ischemia-reperfusion injury preventatively and therapeutically.
Collapse
|
7
|
Bozdag G, Demir B, Calis PT, Zengin D, Dilbaz B. The Impact of Adnexal Torsion on Antral Follicle Count when Compared With Contralateral Ovary. J Minim Invasive Gynecol 2014; 21:632-5. [DOI: 10.1016/j.jmig.2014.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 01/09/2023]
|
8
|
HTK-N, a modified HTK solution, decreases preservation injury in a model of microsteatotic rat liver transplantation. Langenbecks Arch Surg 2012; 397:1323-31. [PMID: 23111581 DOI: 10.1007/s00423-012-1022-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 10/15/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ischemia/reperfusion injury is an obstacle especially in steatotic livers, including those with steatosis induced by acute toxic stress. Recently, a modified histidine-tryptophan-ketoglutarate (HTK) solution, HTK-N, has been developed. This solution contains N-acetylhistidine, amino acids, and iron chelators. This study was designed to test the effects of HTK-N on preservation injury to rat livers after acute toxic injury. METHODS Microvesicular steatosis was induced by a single dose of ethanol (8 g/kg BW). Livers were harvested and stored at 4 °C for 8 h with HTK or HTK-N before transplantation. Tissue and blood samples were taken at 1, 8, and 24 h after reperfusion to compare serum liver enzymes (aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase), standard histology, and immunohistochemistry for myeloperoxidase (MPO), caspase-3, and inducible nitric oxide synthase. Survival was compared after 1 week. For statistics, Analysis of Variance and t test were used. RESULTS HTK-N improved survival from 12.5% in HTK to 87.5% (p < 0.05). Furthermore, liver enzymes were decreased to 2-75% of HTK values (p < 0.05). Necrosis and leukocyte infiltration and MPO, caspase-3, and iNOS expression after transplantation were decreased (p < 0.05). CONCLUSIONS This study demonstrates that HTK-N protects liver grafts with microvesicular steatosis caused by acute toxic injury from cold ischemic injury better than standard HTK most likely via inhibition of hypoxic injury and oxidative stress and amelioration of the inflammatory reaction occurring upon reperfusion.
Collapse
|
9
|
Chen XK, Rathbone CR, Walters TJ. Treatment of Tourniquet-Induced Ischemia Reperfusion Injury with Muscle Progenitor Cells. J Surg Res 2011; 170:e65-73. [DOI: 10.1016/j.jss.2011.05.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/20/2011] [Accepted: 05/27/2011] [Indexed: 10/18/2022]
|
10
|
Li Y, Hawkins BE, DeWitt DS, Prough DS, Maret W. The relationship between transient zinc ion fluctuations and redox signaling in the pathways of secondary cellular injury: relevance to traumatic brain injury. Brain Res 2010; 1330:131-41. [PMID: 20303343 DOI: 10.1016/j.brainres.2010.03.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/05/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
Abstract
A major obstacle that hampers the design of drug therapy for traumatic brain injury is the incomplete understanding of the biochemical pathways that lead to secondary cellular injury and contribute to cell death. One such pathway involves reactive species that generate potentially cytotoxic zinc ion fluctuations as a major executor of neuronal, and possibly glial, cell death. Whether zinc ions released during traumatic brain injury are toxic or protective is controversial but can be approached by investigating the exact concentrations of free zinc ions, the thresholds of compromised zinc buffering capacity, and the mechanism of cellular homeostatic control of zinc. Rapidly stretch-injured rat pheochromocytoma (PC12) cells express cellular zinc ion fluctuations that depend on the production of nitric oxide. Chelation of cellular zinc ions after rapid stretch injury, however, increases cellular reactive oxygen species. In a rat model of traumatic brain injury, parasagittal fluid percussion, analysis of the metal load of metallothionein was used as an indicator of changes in cellular zinc ion concentrations. The combined results from the cellular and in vivo investigations caution against interpreting zinc ion fluctuations in the early phase (24h) after injury as a primarily cytotoxic event.
Collapse
Affiliation(s)
- Yuan Li
- Division of Human Nutrition, Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | | | | | |
Collapse
|