1
|
Morales-Mendoza AG, Flores-Trujillo AKI, Ramírez-Castillo JA, Gallardo-Hernández S, Rodríguez-Vázquez R. Effect of Micro-Nanobubbles on Arsenic Removal by Trichoderma atroviride for Bioscorodite Generation. J Fungi (Basel) 2023; 9:857. [PMID: 37623628 PMCID: PMC10455231 DOI: 10.3390/jof9080857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
The global environmental issue of arsenic (As) contamination in drinking water is a significant problem that requires attention. Therefore, the aim of this research was to address the application of a sustainable methodology for arsenic removal through mycoremediation aerated with micro-nanobubbles (MNBs), leading to bioscorodite (FeAsO4·2H2O) generation. To achieve this, the fungus Trichoderma atroviride was cultivated in a medium amended with 1 g/L of As(III) and 8.5 g/L of Fe(II) salts at 28 °C for 5 days in a tubular reactor equipped with an air MNBs diffuser (TR-MNBs). A control was performed using shaking flasks (SF) at 120 rpm. A reaction was conducted at 92 °C for 32 h for bioscorodite synthesis, followed by further characterization of crystals through Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray diffraction (XRD) analyses. At the end of the fungal growth in the TR-MNBs, the pH decreased to 2.7-3.0, and the oxidation-reduction potential (ORP) reached a value of 306 mV at 5 days. Arsenic decreased by 70%, attributed to possible adsorption through rapid complexation of oxidized As(V) with the exchangeable ferrihydrite ((Fe(III))4-5(OH,O)12), sites, and the fungal biomass. This mineral might be produced under oxidizing and acidic conditions, with a high iron concentration (As:Fe molar ratio = 0.14). The crystals produced in the reaction using the TR-MNBs culture broth and characterized by SEM, XRD, and FTIR revealed the morphology, pattern, and As-O-Fe vibration bands typical of bioscorodite and römerite (Fe(II)(Fe(III))2(SO4)4·14H2O). Arsenic reduction in SF was 30%, with slight characteristics of bioscorodite. Consequently, further research should include integrating the TR-MNBs system into a pilot plant for arsenic removal from contaminated water.
Collapse
Affiliation(s)
- Asunción Guadalupe Morales-Mendoza
- Doctoral Program in Nanosciences and Nanotechnology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Instituto Politécnico Nacional Avenue, No. 2508, Zacatenco, Mexico City 07360, Mexico;
| | - Ana Karen Ivanna Flores-Trujillo
- Department of Biotechnology and Bioengineering, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Instituto Politécnico Nacional Avenue, No. 2508, Zacatenco, Mexico City 07360, Mexico; (A.K.I.F.-T.); (J.A.R.-C.)
| | - Jesús Adriana Ramírez-Castillo
- Department of Biotechnology and Bioengineering, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Instituto Politécnico Nacional Avenue, No. 2508, Zacatenco, Mexico City 07360, Mexico; (A.K.I.F.-T.); (J.A.R.-C.)
- Subdirection of Health Riks, National Center of Disasters Prevention CENAPRED, Delfin Madrigal Avenue, No. 665, Pedregal de Santo Domingo, Coyoacán, Mexico City 04360, Mexico
| | - Salvador Gallardo-Hernández
- Departament of Physics, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Instituto Politécnico Nacional Avenue, No. 2508, Zacatenco, Mexico City 07360, Mexico;
| | - Refugio Rodríguez-Vázquez
- Department of Biotechnology and Bioengineering, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Instituto Politécnico Nacional Avenue, No. 2508, Zacatenco, Mexico City 07360, Mexico; (A.K.I.F.-T.); (J.A.R.-C.)
| |
Collapse
|
2
|
Sandil S, Óvári M, Dobosy P, Vetési V, Endrédi A, Takács A, Füzy A, Záray G. Effect of arsenic-contaminated irrigation water on growth and elemental composition of tomato and cabbage cultivated in three different soils, and related health risk assessment. ENVIRONMENTAL RESEARCH 2021; 197:111098. [PMID: 33826942 DOI: 10.1016/j.envres.2021.111098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
This study was carried out to determine the effect of arsenic on tomato and cabbage cultivated in sand, sandy silt, and silt soil, and irrigated with water containing arsenic at concentrations 0.05 and 0.2 mg/L. Increasing arsenic in irrigation water did not affect the photosynthetic machinery. The chlorophyll content index increased in case of all soils and was dependent on the soil nitrogen, phosphorous, and plant biomass. Arsenic concentrations of 0.05 and 0.2 mg/L did not display any phytotoxic symptoms other than reduction in biomass in some cases. In cabbage, arsenic treatment of 0.2 mg/L increased the overall plant biomass production, while in tomato there was a decrease in aerial part and fruit biomass. The biomass production of both plants treated with different concentrations of arsenic, in the three soils was in the following order: silt > sand > sandy silt. Increase of arsenic in the irrigation water resulted in increase in arsenic concentration in the root and aerial part of both plants, at the same cultivation parameters. But tomato fruits displayed a decrease in arsenic accumulation with higher arsenic treatment. In both plants, the arsenic concentration in the plant parts changed in the following order: root > aerial part > fruit. Cabbage accumulated approximately twenty-fold more arsenic in the edible part (0.10-0.25 mg/kg DW) as compared to tomato (0.006-0.011 mg/kg DW) and displayed a good correlation with soil extractable arsenic. When cabbage was cultivated in three different soils applying the same irrigation water, it accumulated arsenic in the following order: sand > sandy silt > silt (p < 0.001 at 0.05 mg/L and p < 0.01 at 0.2 mg/L arsenic treatment). In tomato, the difference in arsenic accumulation among different soil types was highly significant (p < 0.001) but the accumulation pattern varied with the arsenic treatment applied. Sandy soil with the lowest total soil arsenic (4.32 mg/kg) resulted in the highest arsenic concentration in both plants. Among all soils and plants, the transfer factors and bioaccumulation factors were higher in sandy soil, and in cabbage. The estimated daily intake and hazard quotient values for arsenic were lower than 1 in all cases, implying no non-cancerous health risks at the arsenic concentrations applied in our study. Among nutrients only P showed a slight decline with increasing arsenic concentration while all other elements (Mg, K, Ca, S, Si, Fe, Mn, Cu, Zn) did not display any significant changes.
Collapse
Affiliation(s)
- Sirat Sandil
- Cooperative Research Centre of Environmental Sciences, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117, Budapest, Hungary.
| | - Mihály Óvári
- Centre for Ecological Research, Danube Research Institute, Karolina út 29-31, H-1113, Budapest, Hungary.
| | - Péter Dobosy
- Centre for Ecological Research, Danube Research Institute, Karolina út 29-31, H-1113, Budapest, Hungary.
| | - Viktória Vetési
- Cooperative Research Centre of Environmental Sciences, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117, Budapest, Hungary.
| | - Anett Endrédi
- Centre for Ecological Research, Danube Research Institute, Karolina út 29-31, H-1113, Budapest, Hungary.
| | - Anita Takács
- Centre for Ecological Research, Danube Research Institute, Karolina út 29-31, H-1113, Budapest, Hungary.
| | - Anna Füzy
- Centre for Agricultural Research, Institute for Soil Sciences and Agricultural Chemistry, Herman Ottó út 15, H-1022, Budapest, Hungary.
| | - Gyula Záray
- Cooperative Research Centre of Environmental Sciences, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117, Budapest, Hungary; Centre for Ecological Research, Danube Research Institute, Karolina út 29-31, H-1113, Budapest, Hungary.
| |
Collapse
|
3
|
Arco-Lázaro E, Pardo T, Clemente R, Bernal MP. Arsenic adsorption and plant availability in an agricultural soil irrigated with As-rich water: Effects of Fe-rich amendments and organic and inorganic fertilisers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 209:262-272. [PMID: 29306143 DOI: 10.1016/j.jenvman.2017.12.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/11/2017] [Accepted: 12/17/2017] [Indexed: 06/07/2023]
Abstract
The use of As-rich water for irrigation in agricultural soils may result in As accumulation in soil and crops, with the consequent risk of its entry into the food chain. The effectiveness of three different Fe-based materials (a commercial iron oxide (Bayoxide®), lamination slag (a by-product of the hot rolling of steel) and a commercial red mud derivative (ViroBind™)) used as soil amendments to minimise the impact of irrigation with As-rich water in an agricultural soil-plant system was evaluated in a pot experiment. Simultaneously, the influence of organic and inorganic fertilisation (olive oil mill waste compost versus NPK fertiliser) on the effectiveness of iron oxide in As adsorption processes was also assessed. The As adsorption capacity of the amendments was determined in a preliminary batch experiment using sorption isotherms. Then, a pot experiment was carried out in a growth chamber using an agricultural soil (arenosol) from Segovia province (central Spain), amended with the different materials, in which Lactuca sativa (lettuce) was grown for two months. The As adsorption capacity was higher in the commercial iron oxide and in the red mud derivative, which fitted the Freundlich model (no saturation), than in the lamination slag, which fitted the Langmuir model (limited adsorption). All the materials decreased the pore water As concentration compared to the control (by 29-80%), but only iron oxide reduced As availability in the soil, and none of the amendments decreased the As concentration in plant leaves. The combination of iron oxide and compost did not significantly improve plant growth, but increased nutrients (N, K, Ca, Na and Mg) concentrations and availability in the soil and their concentration in the plants, relative to the other treatments and the control. Therefore, this seems to be a viable option to prevent As leaching and improve the plant nutritional status.
Collapse
Affiliation(s)
- Elena Arco-Lázaro
- Department of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, PO Box 164, 30100 Murcia, Spain
| | - Tania Pardo
- Department of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, PO Box 164, 30100 Murcia, Spain.
| | - Rafael Clemente
- Department of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, PO Box 164, 30100 Murcia, Spain
| | - Ma Pilar Bernal
- Department of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, PO Box 164, 30100 Murcia, Spain
| |
Collapse
|
4
|
García CJ, García-Villalba R, Gil MI, Tomas-Barberan FA. LC-MS Untargeted Metabolomics To Explain the Signal Metabolites Inducing Browning in Fresh-Cut Lettuce. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4526-4535. [PMID: 28506062 DOI: 10.1021/acs.jafc.7b01667] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Enzymatic browning is one of the main causes of quality loss in lettuce as a prepared and ready-to-eat cut salad. An untargeted metabolomics approach using UPLC-ESI-QTOF-MS was performed to explain the wound response of lettuce after cutting and to identify the metabolites responsible of browning. Two cultivars of Romaine lettuce with different browning susceptibilities were studied at short time intervals after cutting. From the total 5975 entities obtained from the raw data after alignment, filtration reduced the number of features to 2959, and the statistical analysis found that only 1132 entities were significantly different. Principal component analysis (PCA) clearly showed that these samples grouped according to cultivar and time after cutting. From those, only 15 metabolites belonging to lysophospholipids, oxylipin/jasmonate metabolites, and phenolic compounds were able to explain the browning process. These selected metabolites showed different trends after cutting; some decreased rapidly, others increased but decreased thereafter, whereas others increased during the whole period of storage. In general, the fast-browning cultivar showed a faster wound response and a higher raw intensity of some key metabolites than the slow-browning one. Just after cutting, the fast-browning cultivar contained 11 of the 15 browning-associated metabolites, whereas the slow-browning cultivar only had 5 of them. These metabolites could be used as biomarkers in breeding programs for the selection of lettuce cultivars with lower browning potential for fresh-cut applications.
Collapse
Affiliation(s)
- Carlos J García
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS (CSIC) , P.O. Box 164, Espinardo, Murcia 30100, Spain
| | - Rocío García-Villalba
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS (CSIC) , P.O. Box 164, Espinardo, Murcia 30100, Spain
| | - María I Gil
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS (CSIC) , P.O. Box 164, Espinardo, Murcia 30100, Spain
| | - Francisco A Tomas-Barberan
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS (CSIC) , P.O. Box 164, Espinardo, Murcia 30100, Spain
| |
Collapse
|
5
|
Caporale AG, Sommella A, Lorito M, Lombardi N, Azam SMGG, Pigna M, Ruocco M. Trichoderma spp. alleviate phytotoxicity in lettuce plants (Lactuca sativa L.) irrigated with arsenic-contaminated water. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1378-84. [PMID: 25046759 DOI: 10.1016/j.jplph.2014.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 06/03/2023]
Abstract
The influence of two strains of Trichoderma (T. harzianum strain T22 and T. atroviride strain P1) on the growth of lettuce plants (Lactuca sativa L.) irrigated with As-contaminated water, and their effect on the uptake and accumulation of the contaminant in the plant roots and leaves, were studied. Accumulation of this non-essential element occurred mainly into the root system and reduced both biomass development and net photosynthesis rate (while altering the plant P status). Plant growth-promoting fungi (PGPF) of both Trichoderma species alleviated, at least in part, the phytotoxicity of As, essentially by decreasing its accumulation in the tissues and enhancing plant growth, P status and net photosynthesis rate. Our results indicate that inoculation of lettuce with selected Trichoderma strains may be helpful, beside the classical biocontrol application, in alleviating abiotic stresses such as that caused by irrigation with As-contaminated water, and in reducing the concentration of this metalloid in the edible part of the plant.
Collapse
Affiliation(s)
- Antonio G Caporale
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Napoli, Italy.
| | - Alessia Sommella
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Napoli, Italy
| | - Matteo Lorito
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Napoli, Italy; Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Portici, Napoli, Italy
| | - Nadia Lombardi
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Napoli, Italy; Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Portici, Napoli, Italy
| | - Shah M G G Azam
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Napoli, Italy
| | - Massimo Pigna
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Napoli, Italy
| | - Michelina Ruocco
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Portici, Napoli, Italy
| |
Collapse
|
6
|
Pereira SI, Figueiredo PI, Barros AS, Dias MC, Santos C, Duarte IF, Gil AM. Changes in the metabolome of lettuce leaves due to exposure to mancozeb pesticide. Food Chem 2014; 154:291-8. [PMID: 24518345 DOI: 10.1016/j.foodchem.2014.01.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/10/2013] [Accepted: 01/08/2014] [Indexed: 12/21/2022]
Abstract
This paper describes a proton high resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) metabolomic study of lettuce (Lactuca sativa L.) leaves to characterise metabolic adaptations during leaf growth and exposure to mancozeb. Metabolite variations were identified through multivariate analysis and checked through spectral integration. Lettuce growth was accompanied by activation of energetic metabolism, preferential glucose use and changes in amino acids, phospholipids, ascorbate, nucleotides and nicotinate/nicotinamide. Phenylalanine and polyphenolic variations suggested higher oxidative stress at later growth stages. Exposure to mancozeb induced changes in amino acids, fumarate and malate, suggesting Krebs cycle up-regulation. In tandem disturbances in sugar, phospholipid, nucleotide and nicotinate/nicotinamide metabolism were noted. Additional changes in phenylalanine, dehydroascorbate, tartrate and formate were consistent with a higher demand for anti-oxidant defence mechanisms. Overall, lettuce exposure to mancozeb was shown to have a significant impact on plant metabolism, with mature leaves tending to be more extensively affected than younger leaves.
Collapse
Affiliation(s)
- Sara I Pereira
- CICECO, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Patricia I Figueiredo
- CICECO, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - António S Barros
- QOPNA, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Maria C Dias
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Conceição Santos
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Iola F Duarte
- CICECO, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ana M Gil
- CICECO, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Su SW, Tsui CC, Lai HY, Chen ZS. Food safety and bioavailability evaluations of four vegetables grown in the highly arsenic-contaminated soils on the Guandu Plain of northern Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:4091-107. [PMID: 24736690 PMCID: PMC4025009 DOI: 10.3390/ijerph110404091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 11/23/2022]
Abstract
Arsenic contamination in a large area of agricultural fields on the Guandu Plain of northern Taiwan was confirmed in a survey conducted in 2006, but research concerning the relationship between bioavailable As concentrations in contaminated soils and crop production in Taiwan is not available. Pot experiments were conducted to examine the growth and accumulation of As in four vegetable crops grown in As-contaminated soils and to assess As intake through consumption. The phytotoxic effects of As in soils were not shown in the pot experiments in which vegetable crops were grown in soils contaminated with different As levels in situ collected from Guandu Plain (120–460 mg/kg) or artificially spiked As-contaminated soils (50–170 mg/kg). Experimental results showed that the bioavailable As extracted with 5 M NaHCO3 from soils can be used to estimate As concentrations in vegetables. The As concentrations in the vegetables were compared with data shown in the literature and As limits calculated from drinking water standards and the provisional tolerance weekly intake (PTWI) of inorganic As established by the Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO). Although the As levels in the vegetables were not high and the bioavailability of As in the soils was quite low, long-term consumption may result in higher As intake in the human body.
Collapse
Affiliation(s)
- Shaw-Wei Su
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Chun-Chih Tsui
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Hung-Yu Lai
- Department of Post-Modern Agriculture, MingDao University, Changhua 52345, Taiwan.
| | - Zueng-Sang Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|