1
|
Effects of copper levels on goat carcass traits and meat quality. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
Sabry MIE, Stino FKR, El-Ghany WAA. Copper: benefits and risks for poultry, livestock, and fish production. Trop Anim Health Prod 2021; 53:487. [PMID: 34590182 DOI: 10.1007/s11250-021-02915-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/10/2021] [Indexed: 01/17/2023]
Abstract
Protein production from animal origin should increase to meet the needs of a growing global population. This article presents an overview on copper (Cu) forms and their importance for animals' physiological functions. Moreover, it will focus on the current and promising nano-Cu applications in poultry, livestock, and fish production systems. Use of Cu as a feed additive directly or indirectly impacts the human food chain and may affect the safety and/or quality of food. Finally, the expected risks and hazards related to the use of nano-Cu that can affect animals, humans, and the environment are described. It is concluded that nano-Cu applications have the potential to provide an efficient solution for reducing the Cu amount in the poultry, livestock, and fish diets, which can help in reducing costs and environmental contamination and increasing animals' productivity. However, concerns over the safety of nano-Cu applications hamper their immediate implementation. Thus, rigorous risk assessments should be conducted to ensure the safety of animal-origin products in the case of supplementation animal diets with nano-copper.
Collapse
Affiliation(s)
- Mohamed I El Sabry
- Animal Production Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | - Farid K R Stino
- Animal Production Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | - Wafaa A Abd El-Ghany
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| |
Collapse
|
3
|
Effects of trace mineral supply from rumen boluses on performance, carcass characteristics, and fecal bacterial profile in beef cattle. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Zhu W, Xu W, Wei C, Zhang Z, Jiang C, Chen X. Effects of Decreasing Dietary Crude Protein Level on Growth Performance, Nutrient Digestion, Serum Metabolites, and Nitrogen Utilization in Growing Goat Kids ( Capra hircus). Animals (Basel) 2020; 10:ani10010151. [PMID: 31963340 PMCID: PMC7023173 DOI: 10.3390/ani10010151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Reducing the dietary protein content could potentially reduce losses of nitrogen from ruminant farms and mitigate pressure on the protein ingredient supply. However, there is little information in the literature on the effect of low-protein diets in growing Anhui white goat kids. We demonstrated that decreasing the dietary crude protein level in Anhui white goat kids affected growth performance, improved nitrogen utilization, and reduced environmental nitrogen pollution. The key finding of this study was that a diet containing 13.4% crude protein supplied adequate protein to improve nitrogen utilization in white goat kids without any adverse effect on growth performance. Abstract The effects of decreasing dietary crude protein (CP) level on growth performance, nutrient digestion, serum metabolites, and nitrogen utilization in growing goat kids were investigated in the current study. Thirty-six male Anhui white goat kids were randomly assigned to one of three CP content diets: 14.8% (control), 13.4%, and 12.0% of dry matter, respectively. Diets were isoenergetic. The experiment lasted for 14 weeks, with the first two weeks being for adaptation. Results showed that the low-CP diet decreased average daily gain, feed efficiency, digestibility of dry matter, organic matter, crude protein, and fiber. No significant changes were observed in dry-matter intake. With a decrease in dietary CP level, fecal nitrogen excretion (% of nitrogen intake) increased linearly, whereas CP intake, blood urea nitrogen, urinary nitrogen excretion (% of nitrogen intake), and total nitrogen excretion (% of nitrogen intake) decreased. Serum glucose concentration decreased, while concentrations of low-density lipoproteins and non-esterified fatty acids increased with the low-CP diet. In conclusion, decreasing the dietary CP level decreased goats’ nitrogen excretion, but with restrictive effects on growth performance. A diet containing 13.4% CP is optimal for reducing nitrogen excretion without any adverse effect on growth performance of Anhui white goat kids. This concentration is 1.4% points lower than the NRC recommendations and thus is also environmentally beneficial on the input side because it decreases the use of feed (soy) protein.
Collapse
Affiliation(s)
- Wen Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (W.Z.); (W.X.); (C.W.); (Z.Z.)
| | - Wei Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (W.Z.); (W.X.); (C.W.); (Z.Z.)
| | - Congcong Wei
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (W.Z.); (W.X.); (C.W.); (Z.Z.)
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (W.Z.); (W.X.); (C.W.); (Z.Z.)
| | - Chunchao Jiang
- Luan Lvjie Animal Husbandry Co., Ltd., Luan 237000, China;
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (W.Z.); (W.X.); (C.W.); (Z.Z.)
- Correspondence:
| |
Collapse
|
5
|
Diniz WJDS, Banerjee P, Regitano LCA. Cross talk between mineral metabolism and meat quality: a systems biology overview. Physiol Genomics 2019; 51:529-538. [PMID: 31545932 DOI: 10.1152/physiolgenomics.00072.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Meat quality has an inherent complexity because of the multiple interrelated causative factors and layers of feedback regulation. Understanding the key factors and their interactions has been challenging, despite the availability of remarkable high-throughput tools and techniques that have provided insights on muscle metabolism and the genetic basis of meat quality. Likewise, we have deepened our knowledge about mineral metabolism and its role in cell functioning. Regardless of these facts, complex traits like mineral content and meat quality have been studied under reductionist approaches. However, as these phenotypes arise from complex interactions among different biological layers (genome, transcriptome, proteome, epigenome, etc.), along with environmental effects, a holistic view and systemic-level understanding of the genetic basis of complex phenotypes are in demand. Based on the state of the art, we addressed some of the questions regarding the interdependence of meat quality traits and mineral content. Furthermore, we sought to highlight potential regulatory mechanisms arising from the genes, miRNAs, and mineral interactions, as well as the pathways modulated by this interplay affecting muscle, mineral metabolism, and meat quality. By answering these questions, we did not intend to give an exhaustive review but to identify the key biological points, the challenges, and benefits of integrative genomic approaches.
Collapse
Affiliation(s)
- Wellison J da Silva Diniz
- Center for Biological and Health Sciences (CCBS), Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Priyanka Banerjee
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Luciana C A Regitano
- Embrapa Pecuária Sudeste, Empresa Brasileira de Pesquisa Agropecuária, São Carlos, São Paulo, Brazil
| |
Collapse
|
6
|
Meat quality of farmed red deer fed a balanced diet: effects of supplementation with copper bolus on different muscles. Animal 2018; 13:888-896. [PMID: 30134996 DOI: 10.1017/s1751731118002173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Supplementation with copper (Cu) improves deer antler characteristics, but it could modify meat quality and increase its Cu content to levels potentially harmful for humans. Here, we studied the effects of Cu bolus supplementation by means on quality and composition of sternocephalicus (ST) and rectus abdominis (RA) muscles (n=13 for each one) from yearling male red deer fed with a balanced diet. Each intraruminal bolus, containing 3.4 g of Cu, was administered orally in the treatment group to compare with the control group. Meat traits studied were pH at 24 h postmortem (pH24), colour, chemical composition, cholesterol content, fatty acid (FA) composition, amino acid (AA) profile and mineral content. In addition, the effect of Cu supplementation on mineral composition of liver and serum (at 0 and 90 days of treatment) was analysed. No interactions between Cu supplementation and muscle were observed for any trait. Supplementation with Cu increased the protein content of meat (P<0.01). However, Cu content of meat, liver and serum was not modified by supplementation. In fact, Cu content of meat (1.20 and 1.34 mg/kg for Cu supplemented and control deer, respectively) was much lower in both groups than 5 mg/kg of fresh weight allowed legally for food of animal origin. However, bolus of Cu tended to increase the meat content of zinc and significantly increased (P<0.05) the hepatic contents of sodium and lead. Muscles studied had different composition and characteristics. The RA muscle had significantly higher protein content (P<0.001), monounsaturated FA content (P<0.05) and essential/non-essential AA ratio (P<0.01) but lower pH24 (P<0.01) and polyunsaturated FA content (P=0.001) than the ST muscle. In addition, RA muscle had 14.4% less cholesterol (P=0.001) than ST muscle. Also, mineral profile differed between muscles with higher content of iron, significantly higher (P<0.001) content of zinc and lower content of calcium, magnesium and phosphorus (P<0.05) for ST muscle compared with RA. Therefore, supplementation with Cu modified deer meat characteristics, but it did not increase its concentration to toxic levels, making it a safe practice from this perspective. Despite the lower content of polyunsaturated FA, quality was better for RA than for ST muscle based on its higher content of protein with more essential/non-essential AA ratio and lower pH24 and cholesterol content.
Collapse
|
7
|
Marley CL, Fychan R, Davies JW, Theobald VJ, Scollan ND, Richardson RI, Sanderson R. Stability, fatty acid composition and sensory properties of the M. Longissimus muscle from beef steers grazing either chicory/ryegrass or ryegrass. Animal 2018; 12:882-888. [PMID: 28877771 DOI: 10.1017/s1751731117001914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Research has shown both production and health benefits for the use of chicory (Cichorium intybus) within ruminant diets. Despite this, little was known about the effects of this forage, containing differing fatty acid profiles and secondary plant compounds compared with ryegrass, on beef stability, fatty acid composition or sensory properties. An experiment was conducted to investigate whether the inclusion of chicory in the diet of grazing beef steers would alter these three properties in the M. Longissimus muscle when compared with beef steers grazing perennial ryegrass (Lolium perenne). Triplicate 2 ha plots were established with a chicory (cv. Puna II)/perennial ryegrass mix or a perennial ryegrass control. A core group of 36 Belgian Blue - cross steers were used within a 2-year beef finishing experiment (n=6/replicate plot). In the 2nd grazing year, steers were slaughtered as they reached a target fat class of 3. Muscle pH was checked 2 and 48 h post-slaughter. A section of the hindloin joint containing the M. Longissimus lumborum muscle was removed and a 20 mm-thick steak was cut and muscle samples were taken for analysis of vitamin E and fatty acid analysis. The remaining section of the loin was vacuum packed in modified atmosphere packs and subjected to simulated retail display. A section of the conditioned loin was used for sensory analysis. Data on pH, vitamin E concentration and colour stability in a simulated retail display showed there were no effects of including chicory in the diet of grazing beef steers on meat stability. There were also no differences found in the fatty acid composition or the overall eating quality of the steaks from the two treatments. In conclusion, there were no substantive effects of including chicory in the swards of grazing beef cattle on meat stability, fatty acid composition or sensory properties of the M. Longissimus muscle when compared with beef steers grazing ryegrass-only swards.
Collapse
Affiliation(s)
- C L Marley
- 1Animal and Aquatic Sciences,Institute of Biological, Environmental and Rural Sciences (IBERS),Aberystwyth University,Gogerddan,Ceredigion,SY23 3EE,UK
| | - R Fychan
- 1Animal and Aquatic Sciences,Institute of Biological, Environmental and Rural Sciences (IBERS),Aberystwyth University,Gogerddan,Ceredigion,SY23 3EE,UK
| | - J W Davies
- 1Animal and Aquatic Sciences,Institute of Biological, Environmental and Rural Sciences (IBERS),Aberystwyth University,Gogerddan,Ceredigion,SY23 3EE,UK
| | - V J Theobald
- 1Animal and Aquatic Sciences,Institute of Biological, Environmental and Rural Sciences (IBERS),Aberystwyth University,Gogerddan,Ceredigion,SY23 3EE,UK
| | - N D Scollan
- 1Animal and Aquatic Sciences,Institute of Biological, Environmental and Rural Sciences (IBERS),Aberystwyth University,Gogerddan,Ceredigion,SY23 3EE,UK
| | - R I Richardson
- 2Food Science and Food Safety Group,Division of Farm Animal Science (DFAS),University of Bristol,Langford,Bristol,BS40 5DU,UK
| | - R Sanderson
- 1Animal and Aquatic Sciences,Institute of Biological, Environmental and Rural Sciences (IBERS),Aberystwyth University,Gogerddan,Ceredigion,SY23 3EE,UK
| |
Collapse
|
8
|
|
9
|
Huang Y, Yang J, Xiao F, Lloyd K, Lin X. Effects of Supplemental Chromium Source and Concentration on Growth Performance, Carcass Traits, and Meat Quality of Broilers Under Heat Stress Conditions. Biol Trace Elem Res 2016; 170:216-23. [PMID: 26184120 DOI: 10.1007/s12011-015-0443-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 07/08/2015] [Indexed: 11/28/2022]
Abstract
The objective of this study was to investigate the effects of dietary supplemental chromium (Cr) on growth performance, carcass traits, and meat quality of broilers reared under heat stress. A total of 252 1-d-old Cobb 500 commercial female broilers were randomly allotted by body weight (BW) to one of six replicate cages (six broilers per cage) for each of seven treatments in a completely randomized design involving a 2 × 3 factorial arrangement of treatments with three Cr sources (Cr propionate, CrPro; Cr picolinate, CrPic; Cr chloride, CrCl3) and two concentrations of added Cr (0.4, or 2.0 mg of Cr/kg) plus a Cr-unsupplemented control group. Feed and distilled-deionized water were available ad libitum for an experimental phase of 42 days. For induction of heat stress, the house temperature was set at 33 ± 2 °C from 15 to 42 days of age. Results showed that birds supplemented with Cr, regardless of Cr source, had increased ADG (P = 0.032) than controls. Birds fed 2.0 mg Cr/kg diet had greater ADG (P = 0.005) than birds fed 0.4 mg Cr/kg diet. Compared to controls, birds fed with Cr had greater dressing percentage (P = 0.021). Percentage of abdominal fat decreased (P = 0.013), whereas, breast intramuscular fat (IMF) remained unaffected (P = 0.147) in Cr supplemented vs control broilers. Broilers supplemented Cr had decreased b* values of meat color (P = 0.042) in breast muscle. B*values were also lesser (P = 0.049) in birds fed CrPro than birds supplemented with CrCl3 or CrPic. Regardless of Cr source, the percentage of cooking loss was decreased (P = 0.025) with Cr supplementation in breast muscle when compared to controls. Results from this study indicate that Cr supplementation, independent of its source, could promote growth and improve carcass traits and meat quality of broilers under heat stress conditions. Chromium propionate seems to have greater beneficial effects on meat color in comparison with CrPic and CrCl3.
Collapse
Affiliation(s)
- Yanling Huang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, Peoples' Republic of China.
| | - Jian Yang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, Peoples' Republic of China
| | - Fang Xiao
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, Peoples' Republic of China
| | - Karen Lloyd
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695-7621, USA
| | - Xi Lin
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695-7621, USA
| |
Collapse
|
10
|
Zhang JZ, Gao Y, Lu QP, Sa RN, Zhang HF. iTRAQ-based quantitative proteomic analysis of longissimus muscle from growing pigs with dietary supplementation of non-starch polysaccharide enzymes. J Zhejiang Univ Sci B 2015; 16:465-78. [PMID: 26055908 PMCID: PMC4471598 DOI: 10.1631/jzus.b1400266] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/31/2015] [Indexed: 01/13/2023]
Abstract
Non-starch polysaccharide enzymes (NSPEs) have long been used in the feed production of monogastric animals to degrade non-starch polysaccharide to oligosaccharides and promote growth performance. However, few studies have been conducted on the effect of such enzymes on skeletal muscle in monogastric animals. To elucidate the mechanism of the effect of NSPEs on skeletal muscle, an isobaric tag for relative and absolute quantification (iTRAQ) for differential proteomic quantitation was applied to investigate alterations in the proteome in the longissimus muscle (LM) of growing pigs after a 50-d period of supplementation with 0.6% NSPEs in the diet. A total of 51 proteins were found to be differentially expressed in the LM between a control group and the NSPE group. Functional analysis of the differentially expressed protein species showed an increased abundance of proteins related to energy production, protein synthesis, muscular differentiation, immunity, oxidation resistance and detoxification, and a decreased abundance of proteins related to inflammation in the LM of the pigs fed NSPEs. These findings have important implications for understanding the mechanisms whereby dietary supplementation with NSPEs enzymes can promote growth performance and improve muscular metabolism in growing pigs.
Collapse
Affiliation(s)
- Ji-ze Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Jilin University, Changchun 130062, China
| | - Qing-ping Lu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ren-na Sa
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hong-fu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|