1
|
Tsai JF, Wu TS, Huang YT, Lin WJ, Yu FY, Liu BH. Exposure to Mycotoxin Citrinin Promotes Carcinogenic Potential of Human Renal Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19054-19065. [PMID: 37988173 DOI: 10.1021/acs.jafc.3c05218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Mycotoxin citrinin (CTN), commonly found in food and health supplements, may induce chromosomal instability. In this study, human renal proximal tubule epithelial cells (hRPTECs) that were exposed to CTN (10 and 20 μM) over 3 days exhibited numerical chromosomal aberrations. Short-term (3 days) and long-term (30 days) exposures to CTN significantly promoted mitotic spindle abnormalities, wound healing, cell migration, and anchorage-independent growth in human embryonic kidney 293 (HEK293) cells. Short-term exposure to 10 and 20 μM CTN increased the number of migrated cells on day 10 by 1.7 and 1.9 times, respectively. The number of anchorage-independent colonies increased from 2.2 ± 1.3 to 7.8 ± 0.6 after short-term exposure to 20 μM CTN and from 2.0 ± 1.0 to 12.0 ± 1.2 after long-term exposure. The transcriptomic profiles of CTN-treated HEK293 were subjected to over-representative analysis (ORA), gene set enrichment analysis (GSEA), and Ingenuity pathway analysis (IPA). Short-term exposure to CTN promoted the RTK/KRAS/RAF/MAPK cascade, while long-term exposure altered the extracellular matrix organization. Both short- and long-term CTN exposure activated cancer and cell cycle-related signaling pathways. These results demonstrate the carcinogenic potential of CTN in human cells and provide valuable insights into the cancer risk associated with CTN.
Collapse
Affiliation(s)
- Jui-Feng Tsai
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Ting-Shuan Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan
| | - Ying-Tzu Huang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Wan-Ju Lin
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| |
Collapse
|
2
|
Kyun ML, Park T, Jung H, Kim I, Kwon JI, Jeong SY, Choi M, Park D, Lee YB, Moon KS. Development of an In Vitro Model for Inflammation Mediated Renal Toxicity Using 3D Renal Tubules and Co-Cultured Human Immune Cells. Tissue Eng Regen Med 2023; 20:1173-1190. [PMID: 37843784 PMCID: PMC10645777 DOI: 10.1007/s13770-023-00602-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/19/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND The emergence of various infectious diseases and the toxic effects of hyperinflammation by biotherapeutics have highlighted the need for in vitro preclinical models mimicking the human immune system. In vitro models studying the relationship between hyperinflammation and acute renal injury mainly rely on 2D culture systems, which have shown limitations in recapitulating kidney function. Herein, we developed an in vitro kidney toxicity model by co-culturing 3D engineered kidney proximal tubules cells (RPTEC/TERT1) with human peripheral blood mononuclear cells (PBMC). METHODS RPTEC/TERT1 were sandwich cultured to form 3D renal tubules for 16 days. The tubules were then co-cultured with PBMC using transwell (0.4 μm pores) for 24 h. Hyperinflammation of PBMC was induced during co-culture using polyinosinic-polycytidylic acid (polyI:C) and lipopolysaccharide (LPS) to investigate the effects of the induced hyperinflammation on the renal tubules. RESULTS Encapsulated RPTEC/TERT1 cells in Matrigel exhibited elevated renal function markers compared to 2D culture. The coexistence of PBMC and polyI:C induced a strong inflammatory response in the kidney cells. This hyperinflammation significantly reduced primary cilia formation and upregulated kidney injury markers along the 3D tubules. Similarly, treating co-cultured PBMC with LPS to induce hyperinflammation resulted in comparable inflammatory responses and potential kidney injury. CONCLUSION The model demonstrated similar changes in kidney injury markers following polyI:C and LPS treatment, indicating its suitability for detecting immune-associated kidney damage resulting from infections and biopharmaceutical applications.
Collapse
Affiliation(s)
- Mi-Lang Kyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Tamina Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hyewon Jung
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Inhye Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Ji-In Kwon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Seo Yule Jeong
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Myeongjin Choi
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Yu Bin Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| | - Kyoung-Sik Moon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
3
|
Merrick BA, Martin NP, Brooks AM, Foley JF, Dunlap PE, Ramaiahgari S, Fannin RD, Gerrish KE. Insights into Repeated Renal Injury Using RNA-Seq with Two New RPTEC Cell Lines. Int J Mol Sci 2023; 24:14228. [PMID: 37762531 PMCID: PMC10531624 DOI: 10.3390/ijms241814228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Renal proximal tubule epithelial cells (RPTECs) are a primary site for kidney injury. We created two RPTEC lines from CD-1 mice immortalized with hTERT (human telomerase reverse transcriptase) or SV40 LgT antigen (Simian Virus 40 Large T antigen). Our hypothesis was that low-level, repeated exposure to subcytotoxic levels of 0.25-2.5 μM cisplatin (CisPt) or 12.5-100 μM aflatoxin B1 (AFB1) would activate distinctive genes and pathways in these two differently immortalized cell lines. RNA-seq showed only LgT cells responded to AFB1 with 1139 differentially expressed genes (DEGs) at 72 h. The data suggested that AFB1 had direct nephrotoxic properties on the LgT cells. However, both the cell lines responded to 2.5 μM CisPt from 3 to 96 h expressing 2000-5000 total DEGs. For CisPt, the findings indicated a coordinated transcriptional program of injury signals and repair from the expression of immune receptors with cytokine and chemokine secretion for leukocyte recruitment; robust expression of synaptic and substrate adhesion molecules (SAMs) facilitating the expression of neural and hormonal receptors, ion channels/transporters, and trophic factors; and the expression of nephrogenesis transcription factors. Pathway analysis supported the concept of a renal repair transcriptome. In summary, these cell lines provide in vitro models for the improved understanding of repeated renal injury and repair mechanisms. High-throughput screening against toxicant libraries should provide a wider perspective of their capabilities in nephrotoxicity.
Collapse
Affiliation(s)
- B. Alex Merrick
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Negin P. Martin
- Viral Vector Core, Neurobiology Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Ashley M. Brooks
- Biostatistics and Computational Biology Branch, Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Julie F. Foley
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Paul E. Dunlap
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Sreenivasa Ramaiahgari
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Rick D. Fannin
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (R.D.F.)
| | - Kevin E. Gerrish
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (R.D.F.)
| |
Collapse
|
4
|
Capinha L, Jennings P, Commandeur JNM. Exposure to Cis- and Trans-regioisomers of S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)-glutathione result in quantitatively and qualitatively different cellular effects in RPTEC/TERT1 cells. Toxicol Lett 2023:S0378-4274(23)00205-9. [PMID: 37353095 DOI: 10.1016/j.toxlet.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Bioactivation of trichloroethylene (TCE) via glutathione conjugation is associated with several adverse effects in the kidney and other extrahepatic tissues. Of the three regioisomeric conjugates formed, S-(1,2-trans-dichlorovinyl)-glutathione (1,2-trans-DCVG), S-(1,2-cis-dichlorovinyl)-glutathione and S-(2,2-dichlorovinyl)-glutathione, only 1,2-trans-DCVG and its corresponding cysteine-conjugate, 1,2-trans-DCVC, have been subject to extensive mechanistic studies. In the present study, the metabolism and cellular effects of 1,2-cis-DCVG, the major regioisomer formed by rat liver fractions, and 1,2-cis-DCVC were investigated for the first time using RPTEC/TERT1-cells as in vitro renal model. In contrast to 1,2-trans-DCVG/C, the cis-regioisomers showed minimal effects on cell viability and mitochondrial respiration. Transcriptomics analysis showed that both 1,2-cis-DCVC and 1,2-trans-DCVC caused Nrf2-mediated antioxidant responses, with 3µM as lowest effective concentration. An ATF4-mediated integrated stress response and p53-mediated responses were observed starting from 30µM for 1,2-trans-DCVC and 125µM for 1,2-cis-DCVC. Comparison of the metabolism of the DCVG regioisomers by LC/MS showed comparable rates of processing to their corresponding DCVC. No detectable N-acetylation was observed in RPTEC/TERT1 cells. Instead, N-glutamylation of DCVC to form N-γ-glutamyl-S-(dichlorovinyl)-L-cysteine was identified as a novel route of metabolism. The results suggest that 1,2-cis-DCVC may be of less toxicological concern for humans than 1,2-trans-DCVC, considering its lower intrinsic toxicity and lower rate of formation by human liver fractions.
Collapse
Affiliation(s)
- Liliana Capinha
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.
| | - Jan N M Commandeur
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Vidal Yucha SE, Quackenbush D, Chu T, Lo F, Sutherland JJ, Kuzu G, Roberts C, Luna F, Barnes SW, Walker J, Kuss P. "3D, human renal proximal tubule (RPTEC-TERT1) organoids 'tubuloids' for translatable evaluation of nephrotoxins in high-throughput". PLoS One 2022; 17:e0277937. [PMID: 36409750 PMCID: PMC9678317 DOI: 10.1371/journal.pone.0277937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
The importance of human cell-based in vitro tools to drug development that are robust, accurate, and predictive cannot be understated. There has been significant effort in recent years to develop such platforms, with increased interest in 3D models that can recapitulate key aspects of biology that 2D models might not be able to deliver. We describe the development of a 3D human cell-based in vitro assay for the investigation of nephrotoxicity, using RPTEC-TERT1 cells. These RPTEC-TERT1 proximal tubule organoids 'tubuloids' demonstrate marked differences in physiologically relevant morphology compared to 2D monolayer cells, increased sensitivity to nephrotoxins observable via secreted protein, and with a higher degree of similarity to native human kidney tissue. Finally, tubuloids incubated with nephrotoxins demonstrate altered Na+/K+-ATPase signal intensity, a potential avenue for a high-throughput, translatable nephrotoxicity assay.
Collapse
Affiliation(s)
- Sarah E. Vidal Yucha
- Novartis Institutes for BioMedical Research-San Diego, La Jolla, CA, United States of America
- * E-mail:
| | - Doug Quackenbush
- Novartis Institutes for BioMedical Research-San Diego, La Jolla, CA, United States of America
| | - Tiffany Chu
- Novartis Institutes for BioMedical Research-San Diego, La Jolla, CA, United States of America
| | - Frederick Lo
- Novartis Institutes for BioMedical Research-San Diego, La Jolla, CA, United States of America
| | - Jeffrey J. Sutherland
- Novartis Institutes for BioMedical Research-Cambridge, Cambridge, MA, United States of America
| | - Guray Kuzu
- Novartis Institutes for BioMedical Research-San Diego, La Jolla, CA, United States of America
| | - Christopher Roberts
- Novartis Institutes for BioMedical Research-San Diego, La Jolla, CA, United States of America
| | - Fabio Luna
- Novartis Institutes for BioMedical Research-San Diego, La Jolla, CA, United States of America
| | - S. Whitney Barnes
- Novartis Institutes for BioMedical Research-San Diego, La Jolla, CA, United States of America
| | - John Walker
- Novartis Institutes for BioMedical Research-San Diego, La Jolla, CA, United States of America
| | - Pia Kuss
- Novartis Institutes for BioMedical Research-San Diego, La Jolla, CA, United States of America
| |
Collapse
|
6
|
Kawabe Y, Kamihira M. Novel cell lines derived from Chinese hamster kidney tissue. PLoS One 2022; 17:e0266061. [PMID: 35358245 PMCID: PMC8970510 DOI: 10.1371/journal.pone.0266061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/13/2022] [Indexed: 01/15/2023] Open
Abstract
Immortalized kidney cell lines are widely used in basic and applied research such as cell permeability tests and drug screening. Although many cell lines have been established from kidney tissues, the immortalization process has not been clarified in these cell lines. In this study, we analyzed the phenotypic changes that occurred during the immortalization of kidney cells derived from Chinese hamster tissue in terms of karyotype and gene expression profiles. In the newly established cell line, designated as CHK-Q, gene expression profiles at each stage of the immortalization process and during the adaptation to serum-free conditions were analyzed by DNA microarray. Renal stem cell markers CD24 and CD133 were expressed in CHK-Q cells, suggesting that CHK-Q cells were transformed from renal stem cells. Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis to identify the pathways of upregulated and downregulated genes revealed that the immortalization of CHK-Q cells was associated with increased fluctuations in the expression of specific proto-oncogenes. Karyotype analysis of spontaneously immortalized CHK-Q cells indicated that CHK-Q chromosomes had a typical modal number of 23 but possessed slight chromosomal abnormalities. In this study, we investigated the mechanism of cell environmental adaptation by analyzing gene expression behavior during the immortalization process and serum-free adaptation. CHK-Q cells are applicable to the fields of biotechnology and biomedical science by utilizing their characteristics as kidney-derived cells.
Collapse
Affiliation(s)
- Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Manufacturing Technology Association of Biologics, Kobe, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Manufacturing Technology Association of Biologics, Kobe, Japan
- * E-mail:
| |
Collapse
|
7
|
Bejoy J, Qian ES, Woodard LE. Tissue Culture Models of AKI: From Tubule Cells to Human Kidney Organoids. J Am Soc Nephrol 2022; 33:487-501. [PMID: 35031569 PMCID: PMC8975068 DOI: 10.1681/asn.2021050693] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
AKI affects approximately 13.3 million people around the world each year, causing CKD and/or mortality. The mammalian kidney cannot generate new nephrons after postnatal renal damage and regenerative therapies for AKI are not available. Human kidney tissue culture systems can complement animal models of AKI and/or address some of their limitations. Donor-derived somatic cells, such as renal tubule epithelial cells or cell lines (RPTEC/hTERT, ciPTEC, HK-2, Nki-2, and CIHP-1), have been used for decades to permit drug toxicity screening and studies into potential AKI mechanisms. However, tubule cell lines do not fully recapitulate tubular epithelial cell properties in situ when grown under classic tissue culture conditions. Improving tissue culture models of AKI would increase our understanding of the mechanisms, leading to new therapeutics. Human pluripotent stem cells (hPSCs) can be differentiated into kidney organoids and various renal cell types. Injury to human kidney organoids results in renal cell-type crosstalk and upregulation of kidney injury biomarkers that are difficult to induce in primary tubule cell cultures. However, current protocols produce kidney organoids that are not mature and contain off-target cell types. Promising bioengineering techniques, such as bioprinting and "kidney-on-a-chip" methods, as applied to kidney nephrotoxicity modeling advantages and limitations are discussed. This review explores the mechanisms and detection of AKI in tissue culture, with an emphasis on bioengineered approaches such as human kidney organoid models.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eddie S. Qian
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lauren E. Woodard
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
8
|
Hall AM, Trepiccione F, Unwin RJ. Drug toxicity in the proximal tubule: new models, methods and mechanisms. Pediatr Nephrol 2022; 37:973-982. [PMID: 34050397 PMCID: PMC9023418 DOI: 10.1007/s00467-021-05121-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/23/2021] [Accepted: 05/05/2021] [Indexed: 10/28/2022]
Abstract
The proximal tubule (PT) reabsorbs most of the glomerular filtrate and plays an important role in the uptake, metabolism and excretion of xenobiotics. Some therapeutic drugs are harmful to the PT, and resulting nephrotoxicity is thought to be responsible for approximately 1 in 6 of cases of children hospitalized with acute kidney injury (AKI). Clinically, PT dysfunction leads to urinary wasting of important solutes normally reabsorbed by this nephron segment, leading to systemic complications such as bone demineralization and a clinical scenario known as the renal Fanconi syndrome (RFS). While PT defects can be diagnosed using a combination of blood and urine markers, including urinary excretion of low molecular weight proteins (LMWP), standardized definitions of what constitutes clinically significant toxicity are lacking, and identifying which patients will go on to develop progressive loss of kidney function remains a major challenge. In addition, much of our understanding of cellular mechanisms of drug toxicity is still limited, partly due to the constraints of available cell and animal models. However, advances in new and more sophisticated in vitro models of the PT, along with the application of high-content analytical methods that can provide readouts more relevant to the clinical manifestations of nephrotoxicity, are beginning to extend our knowledge. Such technical progress should help in discovering new biomarkers that can better detect nephrotoxicity earlier and predict its long-term consequences, and herald a new era of more personalized medicine.
Collapse
Affiliation(s)
- Andrew M. Hall
- grid.7400.30000 0004 1937 0650Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland ,grid.412004.30000 0004 0478 9977Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Francesco Trepiccione
- grid.9841.40000 0001 2200 8888Department of Translational Medical Science, University of Campania ‘Luigi Vanvitelli’, Naples, Italy ,grid.428067.f0000 0004 4674 1402Biogem Research Institute, Ariano Irpino, Italy
| | - Robert J. Unwin
- grid.83440.3b0000000121901201Department of Renal Medicine, University College London, London, UK
| |
Collapse
|
9
|
Gorka J, Marona P, Kwapisz O, Waligórska A, Pospiech E, Dobrucki JW, Rys J, Jura J, Miekus K. MCPIP1 inhibits Wnt/β-catenin signaling pathway activity and modulates epithelial-mesenchymal transition during clear cell renal cell carcinoma progression by targeting miRNAs. Oncogene 2021; 40:6720-6735. [PMID: 34657130 PMCID: PMC8677621 DOI: 10.1038/s41388-021-02062-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023]
Abstract
Epithelial-mesenchymal transition (EMT) refers to the acquisition of mesenchymal properties in cells participating in tumor progression. One hallmark of EMT is the increased level of active β-catenin, which can trigger the transcription of Wnt-specific genes responsible for the control of cell fate. We investigated how Monocyte Chemotactic Protein-1-Induced Protein-1 (MCPIP1), a negative regulator of inflammatory processes, affects EMT in a clear cell renal cell carcinoma (ccRCC) cell line, patient tumor tissues and a xenotransplant model. We showed that MCPIP1 degrades miRNAs via its RNase activity and thus protects the mRNA transcripts of negative regulators of the Wnt/β-catenin pathway from degradation, which in turn prevents EMT. Mechanistically, the loss of MCPIP1 RNase activity led to the upregulation of miRNA-519a-3p, miRNA-519b-3p, and miRNA-520c-3p, which inhibited the expression of Wnt pathway inhibitors (SFRP4, KREMEN1, CXXC4, CSNK1A1 and ZNFR3). Thus, the level of active nuclear β-catenin was increased, leading to increased levels of EMT inducers (SNAI1, SNAI2, ZEB1 and TWIST) and, consequently, decreased expression of E-cadherin, increased expression of mesenchymal markers, and acquisition of the mesenchymal phenotype. This study revealed that MCPIP1 may act as a tumor suppressor that prevents EMT by stabilizing Wnt inhibitors and decreasing the levels of active β-catenin and EMT inducers.
Collapse
Affiliation(s)
- Judyta Gorka
- grid.5522.00000 0001 2162 9631Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Paulina Marona
- grid.5522.00000 0001 2162 9631Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Oliwia Kwapisz
- grid.5522.00000 0001 2162 9631Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Agnieszka Waligórska
- grid.5522.00000 0001 2162 9631Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Ewelina Pospiech
- grid.5522.00000 0001 2162 9631Human Genome Variation Research Group, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Jurek W. Dobrucki
- grid.5522.00000 0001 2162 9631Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Janusz Rys
- grid.418165.f0000 0004 0540 2543Department of Tumor Pathology, Centre of Oncology, Maria Skłodowska-Curie Memorial Institute, Cracow Branch, Garncarska 11, 31-115 Krakow, Poland
| | - Jolanta Jura
- grid.5522.00000 0001 2162 9631Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Katarzyna Miekus
- grid.5522.00000 0001 2162 9631Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|
10
|
Saib S, Hodin S, He Z, Delézay O, Delavenne X. Is the human model RPTEC/TERT1 a relevant model for assessing renal drug efflux? Fundam Clin Pharmacol 2020; 35:732-743. [PMID: 33185296 DOI: 10.1111/fcp.12631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 01/14/2023]
Abstract
Active tubular secretion plays a major role in renal excretion of drugs thanks to the presence of many membrane transporters such as ABC transporters. These proteins facilitate drug transfer into the urine and could be a source of pharmacokinetic variabilities. Up to now, several human in vitro models of proximal tubule have been proposed but few of them have been characterized for predicting drugs renal efflux. The aim of this study was to determine whether the human model RPTEC/TERT1 meets all the criteria expected of a good model to assess renal drug transport. First, in vitro barrier properties were investigated. Then, the expression of several ABC transporters was assessed by immunofluorescence and relative quantification by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) in comparison to the MDCK model. Finally, bidirectional transport studies were performed to evaluate the functionality of transporters and the abilities of model to discriminate several drugs. The RPTEC/TERT1 model formed a tight structure (192 Ω.cm2 ) that was confirmed by paracellular permeability assays. Proteomic analysis and immunofluorescence staining showed the expression of several ABC transporters. Then, only the functionality of P-gp was confirmed by the active efflux of apixaban in this study. In addition, the RPTEC/TERT1 model presents the key criteria of a renal barrier and expresses several ABC transporters. Nevertheless, the BCRP and MRP's functionality was not confirmed and further investigations are required to valid this model as in vitro model for assessing renal drug efflux.
Collapse
Affiliation(s)
- Sonia Saib
- Dysfonction Vasculaire et Hémostase, INSERM U1059, Université Jean Monnet, Saint-Etienne, France
| | - Sophie Hodin
- Dysfonction Vasculaire et Hémostase, INSERM U1059, Université Jean Monnet, Saint-Etienne, France
| | - Zhiguo He
- Laboratoire de Biologie, d'Ingénierie et d'Imagerie de la Greffe de Cornée, BiiGC, Saint-Etienne, France
| | - Olivier Delézay
- Dysfonction Vasculaire et Hémostase, INSERM U1059, Université Jean Monnet, Saint-Etienne, France
| | - Xavier Delavenne
- Dysfonction Vasculaire et Hémostase, INSERM U1059, Université Jean Monnet, Saint-Etienne, France.,Laboratoire de Pharmacologie Toxicologie Gaz du sang, CHU de Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
11
|
Ryan H, Simmons CS. Potential Applications of Microfluidics to Acute Kidney Injury Associated with Viral Infection. Cell Mol Bioeng 2020; 13:305-311. [PMID: 32904757 PMCID: PMC7457440 DOI: 10.1007/s12195-020-00649-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
The kidneys are susceptible to adverse effects from many diseases, including several that are not tissue-specific. Acute kidney injury is a common complication of systemic diseases such as diabetes, lupus, and certain infections including the novel coronavirus (SARS-CoV-2). Microfluidic devices are an attractive option for disease modeling, offering the opportunity to utilize human cells, control experimental and environmental conditions, and combine with other on-chip devices. For researchers with expertise in microfluidics, this brief perspective highlights potential applications of such devices to studying SARS-CoV-2-induced kidney injury.
Collapse
Affiliation(s)
- Holly Ryan
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, PO Box 116250, Gainesville, FL 32611 USA
- Department of Medicine, College of Medicine, University of Florida, Gainesville, USA
| | - Chelsey S. Simmons
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, PO Box 116250, Gainesville, FL 32611 USA
- Department of Medicine, College of Medicine, University of Florida, Gainesville, USA
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA
| |
Collapse
|
12
|
Qiu X, Miao Y, Geng X, Zhou X, Li B. Evaluation of biomarkers for in vitro prediction of drug-induced nephrotoxicity in RPTEC/TERT1 cells. Toxicol Res (Camb) 2020; 9:91-100. [PMID: 32440340 DOI: 10.1093/toxres/tfaa005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
There have been intensive efforts to identify in vivo biomarkers that can be used to monitor drug-induced kidney damage before significant impairment occurs. Kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, clusterin, β2-microglobulin and cystatin C (CysC) have been validated as clinical or preclinical biomarkers in urinary and plasma predictive of acute and chronic kidney injuries and diseases. A high-throughput in vitro assay predictive of nephrotoxicity could potentially be implemented in early drug discovery stage to reduce attrition at later stages of drug development. To assess the potential of these known in vivo biomarkers for in vitro evaluation of drug-induced nephrotoxicity, we selected four nephrotoxic agents (cisplatin, cyclosporin, aristolochic acid I and gentamicin) and detected their effects on the protein levels of nephrotoxic biomarkers in RPTEC/TERT1 cells. The protein levels of clusterin, CysC, GSTπ and TIMP-1 significantly increased in the conditioned media of RPTEC/TERT1 cells treated with cisplatin, cyclosporin, aristolochic acid I and gentamicin. The messenger RNA levels of clusterin, CysC, GSTπ and TIMP-1 also increased in RPTEC/TERT1 cells treated with cisplatin, cyclosporin, aristolochic acid I and gentamicin, indicating that drug-induced upregulation involves transcriptional activation. Taken together, the results clearly demonstrate that among the known in vivo nephrotoxic biomarkers, clusterin, CysC, GSTπ and TIMP-1 can be effectively used as in vitro biomarkers for drug-induced nephrotoxicity in RPTEC/TERT1 cells.
Collapse
Affiliation(s)
- Xuan Qiu
- Chinese Academy of Medical Sciences & Peking Union Medical College, No. 9, Dongdan Santiao, Dongcheng District, Beijing 100730, China.,National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Yufa Miao
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Xingchao Geng
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Xiaobing Zhou
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Bo Li
- Chinese Academy of Medical Sciences & Peking Union Medical College, No. 9, Dongdan Santiao, Dongcheng District, Beijing 100730, China.,National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| |
Collapse
|
13
|
Lemaire J, Van der Hauwaert C, Savary G, Dewaeles E, Perrais M, Lo Guidice JM, Pottier N, Glowacki F, Cauffiez C. Cadmium-Induced Renal Cell Toxicity Is Associated With MicroRNA Deregulation. Int J Toxicol 2020; 39:103-114. [DOI: 10.1177/1091581819899039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cadmium is an environmental pollutant well known for its nephrotoxic effects. Nevertheless, mechanisms underlying nephrotoxicity continue to be elucidated. MicroRNAs (miRNAs) have emerged in recent years as modulators of xenobiotic-induced toxicity. In this context, our study aimed at elucidating whether miRNAs are involved in renal proximal tubular toxicity induced by cadmium exposure. We showed that cadmium exposure, in 2 distinct renal proximal tubular cell models (renal proximal tubular epithelial cell [RPTEC]/human telomerase reverse transcriptase [hTERT] and human kidney-2), resulted in cytotoxicity associated with morphological changes, overexpression of renal injury markers, and induction of apoptosis and inflammation processes. Cadmium exposure also resulted in miRNA modulation, including the significant upregulation of 38 miRNAs in RPTEC/hTERT cells. Most of these miRNAs are known to target genes whose coding proteins are involved in oxidative stress, inflammation, and apoptosis, leading to tissue remodeling. In conclusion, this study provides a list of dysregulated miRNAs which may play a role in the pathophysiology of cadmium-induced kidney damages and highlights promising cadmium molecular biomarkers that warrants to be further evaluated.
Collapse
Affiliation(s)
- J. Lemaire
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| | - C. Van der Hauwaert
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
- Département de la Recherche en Santé, CHU Lille, Lille, France
| | - G. Savary
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| | - E. Dewaeles
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| | - M. Perrais
- UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Université de Lille, Lille, France
| | - J. M. Lo Guidice
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| | - N. Pottier
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
- Service de Toxicologie et Génopathies, CHU Lille, Lille, France
| | - F. Glowacki
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
- Service de Néphrologie, CHU Lille, Lille, France
| | - C. Cauffiez
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| |
Collapse
|
14
|
Faria J, Ahmed S, Gerritsen KGF, Mihaila SM, Masereeuw R. Kidney-based in vitro models for drug-induced toxicity testing. Arch Toxicol 2019; 93:3397-3418. [PMID: 31664498 DOI: 10.1007/s00204-019-02598-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/15/2019] [Indexed: 12/18/2022]
Abstract
The kidney is frequently involved in adverse effects caused by exposure to foreign compounds, including drugs. An early prediction of those effects is crucial for allowing novel, safe drugs entering the market. Yet, in current pharmacotherapy, drug-induced nephrotoxicity accounts for up to 25% of the reported serious adverse effects, of which one-third is attributed to antimicrobials use. Adverse drug effects can be due to direct toxicity, for instance as a result of kidney-specific determinants, or indirectly by, e.g., vascular effects or crystals deposition. Currently used in vitro assays do not adequately predict in vivo observed effects, predominantly due to an inadequate preservation of the organs' microenvironment in the models applied. The kidney is highly complex, composed of a filter unit and a tubular segment, together containing over 20 different cell types. The tubular epithelium is highly polarized, and the maintenance of this polarity is critical for optimal functioning and response to environmental signals. Cell polarity is dependent on communication between cells, which includes paracrine and autocrine signals, as well as biomechanic and chemotactic processes. These processes all influence kidney cell proliferation, migration, and differentiation. For drug disposition studies, this microenvironment is essential for prediction of toxic responses. This review provides an overview of drug-induced injuries to the kidney, details on relevant and translational biomarkers, and advances in 3D cultures of human renal cells, including organoids and kidney-on-a-chip platforms.
Collapse
Affiliation(s)
- João Faria
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Sabbir Ahmed
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Karin G F Gerritsen
- Department of Nephrology and Hypertension, University Medical Center, Utrecht, The Netherlands
| | - Silvia M Mihaila
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.,Department of Nephrology and Hypertension, University Medical Center, Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
15
|
Bastek H, Zubel T, Stemmer K, Mangerich A, Beneke S, Dietrich DR. Comparison of Aristolochic acid I derived DNA adduct levels in human renal toxicity models. Toxicology 2019; 420:29-38. [DOI: 10.1016/j.tox.2019.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 01/28/2023]
|
16
|
Schulz A, Chuquimia OD, Antypas H, Steiner SE, Sandoval RM, Tanner GA, Molitoris BA, Richter-Dahlfors A, Melican K. Protective vascular coagulation in response to bacterial infection of the kidney is regulated by bacterial lipid A and host CD147. Pathog Dis 2018; 76:5210089. [PMID: 30476069 PMCID: PMC7297223 DOI: 10.1093/femspd/fty087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/23/2018] [Indexed: 01/26/2023] Open
Abstract
Bacterial infection of the kidney leads to a rapid cascade of host protective responses, many of which are still poorly understood. We have previously shown that following kidney infection with uropathogenic Escherichia coli (UPEC), vascular coagulation is quickly initiated in local perivascular capillaries that protects the host from progressing from a local infection to systemic sepsis. The signaling mechanisms behind this response have not however been described. In this study, we use a number of in vitro and in vivo techniques, including intravital microscopy, to identify two previously unrecognized components influencing this protective coagulation response. The acylation state of the Lipid A of UPEC lipopolysaccharide (LPS) is shown to alter the kinetics of local coagulation onset in vivo. We also identify epithelial CD147 as a potential host factor influencing infection-mediated coagulation. CD147 is expressed by renal proximal epithelial cells infected with UPEC, contingent to bacterial expression of the α-hemolysin toxin. The epithelial CD147 subsequently can activate tissue factor on endothelial cells, a primary step in the coagulation cascade. This study emphasizes the rapid, multifaceted response of the kidney tissue to bacterial infection and the interplay between host and pathogen during the early hours of renal infection.
Collapse
Affiliation(s)
- Anette Schulz
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Olga D Chuquimia
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Haris Antypas
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Svava E Steiner
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Ruben M Sandoval
- Indiana University School of Medicine, Roudebush VAMC, Indiana Center for Biological Microscopy, Indianapolis, IN 46202, USA
| | - George A Tanner
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bruce A Molitoris
- Indiana University School of Medicine, Roudebush VAMC, Indiana Center for Biological Microscopy, Indianapolis, IN 46202, USA
| | - Agneta Richter-Dahlfors
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Keira Melican
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| |
Collapse
|
17
|
Bajaj P, Chowdhury SK, Yucha R, Kelly EJ, Xiao G. Emerging Kidney Models to Investigate Metabolism, Transport, and Toxicity of Drugs and Xenobiotics. Drug Metab Dispos 2018; 46:1692-1702. [PMID: 30076203 DOI: 10.1124/dmd.118.082958] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/01/2018] [Indexed: 01/11/2023] Open
Abstract
The kidney is a major clearance organ of the body and is responsible for the elimination of many xenobiotics and prescription drugs. With its multitude of uptake and efflux transporters and metabolizing enzymes, the proximal tubule cell (PTC) in the nephron plays a key role in the disposition of xenobiotics and is also a primary site for toxicity. In this minireview, we first provide an overview of the major transporters and metabolizing enzymes in the PTCs responsible for biotransformation and disposition of drugs. Next, we discuss different cell sources that have been used to model PTCs in vitro, their pros and cons, and their characterization. As current technology is inadequate to evaluate reliably drug disposition and toxicity in the kidney, we then discuss recent advancements in kidney microphysiological systems (MPS) and the need to develop robust in vitro platforms that could be routinely used by pharmaceutical companies to screen compounds. Finally, we discuss the new and exciting field of stem cell-derived kidney models as potential cell sources for future kidney MPS. Given the push from both regulatory agencies and pharmaceutical companies to use more predictive "human-like" in vitro systems in the early stages of drug development to reduce attrition, these emerging models have the potential to be a game changer and may revolutionize how renal disposition and kidney toxicity in drug discovery are evaluated in the future.
Collapse
Affiliation(s)
- Piyush Bajaj
- Drug Safety Research and Evaluation (P.B.) and Drug Metabolism and Pharmacokinetics Department (S.K.C., R.Y., G.X.), Takeda Pharmaceutical International Co., Cambridge, Massachusetts; and Department of Pharmaceutics, University of Washington, Seattle, Washington (E.J.K.)
| | - Swapan K Chowdhury
- Drug Safety Research and Evaluation (P.B.) and Drug Metabolism and Pharmacokinetics Department (S.K.C., R.Y., G.X.), Takeda Pharmaceutical International Co., Cambridge, Massachusetts; and Department of Pharmaceutics, University of Washington, Seattle, Washington (E.J.K.)
| | - Robert Yucha
- Drug Safety Research and Evaluation (P.B.) and Drug Metabolism and Pharmacokinetics Department (S.K.C., R.Y., G.X.), Takeda Pharmaceutical International Co., Cambridge, Massachusetts; and Department of Pharmaceutics, University of Washington, Seattle, Washington (E.J.K.)
| | - Edward J Kelly
- Drug Safety Research and Evaluation (P.B.) and Drug Metabolism and Pharmacokinetics Department (S.K.C., R.Y., G.X.), Takeda Pharmaceutical International Co., Cambridge, Massachusetts; and Department of Pharmaceutics, University of Washington, Seattle, Washington (E.J.K.)
| | - Guangqing Xiao
- Drug Safety Research and Evaluation (P.B.) and Drug Metabolism and Pharmacokinetics Department (S.K.C., R.Y., G.X.), Takeda Pharmaceutical International Co., Cambridge, Massachusetts; and Department of Pharmaceutics, University of Washington, Seattle, Washington (E.J.K.)
| |
Collapse
|
18
|
Shah H, Patel M, Shrivastava N. Gene expression study of phase I and II metabolizing enzymes in RPTEC/TERT1 cell line: application in in vitro nephrotoxicity prediction. Xenobiotica 2016; 47:837-843. [PMID: 27616666 DOI: 10.1080/00498254.2016.1236299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. The phase I and II metabolizing enzymes of kidneys play an important role in the metabolism of xenobiotic as well as endogenous compounds and proximal tubules of kidney constitute high concentration of these metabolizing enzymes compared with the other parts. 2. It has been shown previously that differential enzyme expression among human and rodent/non-rodent species can be a roadblock in drug discovery and development process. Currently, proximal tubule cell lines of human origin such as RPTEC/TERT1 and HK-2 are used to understand the pathophysiology of kidney diseases, therapeutic efficacy of drugs, and nephrotoxicity of compounds. 3. The purpose of the present study is to understand the metabolic enzymes present in RPTEC/TERT1 and HK-2 cell lines that would help to interpret and predict probable in vitro behavior of the molecule being tested. 4. We analyzed the expression of phase I and II metabolizing enzymes of RPTEC/TERT1 and HK-2 cell lines. We found equal expression of CYP1B1, 2J2, 3A4, 3A5, UGT1A9, SULT2A1 and GSTA, higher expression of 2B6, 2D6, 4A11, 4F2, 4F8, 4F11, UGT2B7, SULT1E1 in RPTEC/TERT1 and absence of GSTT in RPTEC/TERT1 compared to HK-2 at mRNA level. Such differences can affect the outcome of in vitro nephrotoxicity prediction.
Collapse
Affiliation(s)
- Heta Shah
- a Department of Biotechnology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Ahmedabad , Gujarat , India and
| | - Manish Patel
- a Department of Biotechnology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Ahmedabad , Gujarat , India and
| | - Neeta Shrivastava
- a Department of Biotechnology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Ahmedabad , Gujarat , India and.,b Department of Pharmacognosy and Phytochemistry , B. V. Patel Pharmaceutical Education and Research Development (PERD) Center , Ahmedabad , Gujarat , India
| |
Collapse
|