1
|
Deng H, Liu H, Yang Z, Bao M, Lin X, Han J, Qu C. Progress of Selenium Deficiency in the Pathogenesis of Arthropathies and Selenium Supplement for Their Treatment. Biol Trace Elem Res 2022; 200:4238-4249. [PMID: 34779998 DOI: 10.1007/s12011-021-03022-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
Selenium, an essential trace element for human health, exerts an indispensable effect in maintaining physiological homeostasis and functions in the body. Selenium deficiency is associated with arthropathies, such as Kashin-Beck disease, rheumatoid arthritis, osteoarthritis, and osteoporosis. Selenium deficiency mainly affects the normal physiological state of bone and cartilage through oxidative stress reaction and immune reaction. This review aims to explore the role of selenium deficiency and its mechanisms existed in the pathogenesis of arthropathies. Meanwhile, this review also summarized various experiments to highlight the crucial functions of selenium in maintaining the homeostasis of bone and cartilage.
Collapse
Affiliation(s)
- Huan Deng
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Haobiao Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Zhihao Yang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Miaoye Bao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xue Lin
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jing Han
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Chengjuan Qu
- Department of Odontology, Umeå University, 90187, Umeå, Sweden
| |
Collapse
|
2
|
Zhang Y, Zhou P, Shen X. Effects of Se-Enriched Malt on the Immune and Antioxidant Function in the Se-Deprived Reclamation Merino Sheep in Southern Xinjiang. Biol Trace Elem Res 2022; 200:3621-3629. [PMID: 34636021 DOI: 10.1007/s12011-021-02957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
We have found that the Reclamation merino sheep in Southern Xinjiang, China, showed emaciation, stiff limbs, instability, and sudden death, which is related to the impairment of immune function and antioxidant capacity caused by selenium (Se) deficiency. The experiments were to study the effects of Se-enriched malt on the immune and antioxidant function in Se-deprived Reclamation merino sheep in Southern Xinjiang, China. The samples of soil and forage had been collected from tested pastures, and animal tissues were also collected in tested animals. The mineral content of soil, forage, and animal tissues was measured in the collected samples. Hematological indexes and biochemical values were also examined. The findings showed that the Se contents were extremely lower in affected soil and forage than those from healthy soil and forage (P < 0.01). The Se contents in affected blood and wool were also extremely lower than those from healthy blood and wool (P < 0.01). The values in glutathione peroxidase and total antioxidant capacity in affected serum samples were also extremely lower than those from healthy serum samples, and levels of malondialdehyde, total nitric oxide synthase, and lipid peroxide were extremely higher in affected serum samples than those from healthy serum samples (P < 0.01). Meanwhile, the values of hemoglobin, packed cell volume, and platelet count from affected blood were extremely lower than those from healthy blood (P < 0.01). The levels of interleukin (IL)-1β, IL-2, tumor necrosis factor-alpha, immunoglobulin A, and immunoglobulin G in serum were extremely decreased in the affected Reclamation merino sheep (P < 0.01). The levels of IL-6 and immunoglobulin M in serum were extremely reduced in the affected Reclamation merino sheep compared to healthy animals (P < 0.01). The animals in affected pastures were orally treated with Se-enriched malt, and the Se contents in blood were extremely increased (P < 0.01). The immune function and antioxidant indicator returned to within the healthy range. Consequently, our findings were indicated that the disorder of the Reclamation merino sheep was mainly caused by the Se deficiency in soil and forage. The Se-enriched malt could not only markedly increase the Se content in blood but also much improve the immune function and the antioxidant capacity in the Se-deprived Reclamation merino sheep.
Collapse
Affiliation(s)
- Yunzhuo Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- World Bank Poverty Alleviation Project Office in Guizhou, Guiyang, 550004, Southwest China, China
| | - Ping Zhou
- World Bank Poverty Alleviation Project Office in Guizhou, Guiyang, 550004, Southwest China, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, Xinjiang, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Guiyang, 550004, Southwest China, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
3
|
NRF2/PGC-1α-mediated mitochondrial biogenesis contributes to T-2 toxin-induced toxicity in human neuroblastoma SH-SY5Y cells. Toxicol Appl Pharmacol 2022; 451:116167. [PMID: 35842139 DOI: 10.1016/j.taap.2022.116167] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022]
Abstract
The T-2 toxin is a highly toxic trichothecene mycotoxin that would cause serious toxicity in humans and animals. Recent studies suggest that the central nervous system (CNS) is susceptible to T-2 toxin, which can easily cross the blood-brain barrier, accumulate in brain tissues, and cause neurotoxicity. The growing evidence indicates that oxidative damage and mitochondrial dysfunction play a critical role in T-2 toxin-induced neurotoxicity, but the mechanisms are still poorly understood. Our present study showed that T-2 toxin decreased cell viability and increased lactate dehydrogenase leakage in human neuroblastoma SH-SY5Y cells in a concentration- and time-dependent manner. T-2 toxin elicited prominent oxidative stress and mitochondrial dysfunction, as evidenced by the promotion of cellular reactive oxygen species generation, disruption of the mitochondrial membrane potential, depletion of glutathione and reduction of the cellular ATP content. T-2 toxin impaired mitochondrial biogenesis, including decreased mitochondrial DNA copy number and affected the nuclear factor erythroid 2 related factor 2 (NRF2) / peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC-1α) pathway by upregulating NRF2 mRNA and protein expression while inhibiting the expression of PGC-1α, nuclear respiratory factor (NRF1) and mitochondrial transcription factor A (TFAM). NRF2 knockdown was found to significantly exacerbate T-2 toxin-induced cytotoxicity, oxidative stress, and mitochondrial dysfunction, as well as aggravate mitochondrial biogenesis impairment. NRF2 knockdown compromised T-2 toxin-induced upregulation of NRF2, but augmented the inhibition of PGC-1α, NRF1, and TFAM by T-2 toxin. Taken together, these findings suggest that T-2 toxin-induced oxidative stress and mitochondrial dysfunction in SH-SY5Y cells, at least in part by, NRF2/PGC-1α pathway-mediated mitochondrial biogenesis.
Collapse
|
4
|
Huo B, Wu T, Song C, Shen X. Studies of Selenium Deficiency in the Wumeng Semi-Fine Wool Sheep. Biol Trace Elem Res 2020; 194:152-158. [PMID: 31147978 DOI: 10.1007/s12011-019-01751-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/13/2019] [Indexed: 12/01/2022]
Abstract
Wumeng semi-fine wool sheep are affected by a disease, characterized by emaciation, stiffness and trembling of the limbs, weakness and inability to stand, and sudden death. The objective of the study was to determine possible relationships between the disease and mineral deficiencies. Samples of wool, blood, and liver were collected from affected and healthy sheep. Samples of soil and forage were collected from affected and unaffected areas. The samples were used for hematological and biochemical analyses and mineral nutrient measurements. Results showed that selenium concentrations in forage and soil samples from affected areas were significantly lower than those from unaffected areas (P < 0.01). Meanwhile, selenium concentrations of wool, blood, and liver from the affected sheep were also significantly lower than those from the healthy sheep (P < 0.01). The mean concentration of hemoglobin (Hb), packed cell volume (PCV), and mean corpuscular hemoglobin (MCH) from the affected sheep were significantly lower than those from the healthy sheep (P < 0.01). Serum glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activity in the affected sheep were significantly lower than those in the healthy sheep (P < 0.01). Serum creatine phosphokinase (CPK), lactate dehydrogenase (LDH), glutamate pyruvate transaminase (GPT), glutamic oxaloacetic transaminase (GOT), alkaline phosphatase (ALP), and malondialdehyde (MDA) values in the affected sheep were significantly higher than those in the healthy sheep (P < 0.01). Serum concentrations of free triiodothyronine (FT3) and triiodothyronine (TT3) in the affected sheep were significantly lower than those in the healthy sheep; serum concentrations of free tetraiodothyronine (FT4) and tetraiodothyronine (TT4) in the affected sheep were significantly higher than those in the healthy sheep (P < 0.01). But the administration of selenium and vitamin E by hypodermic injection prevented and cured the disease. The injection contains 0.1% and 5% of sodium selenite and vitamin E, respectively. A single dose is 6, 6, and 2 mL for mature ewe, mature ram, and lamb, respectively, repeated only once 15 days later. This study demonstrated that the disorder of Wumeng semi-fine wool sheep was mainly caused by the selenium deficiency in soil and forage.
Collapse
Affiliation(s)
- Bin Huo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Ting Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Chunjie Song
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, 550025, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China.
| |
Collapse
|
5
|
Chen M, Zeng L, Luo X, Mehboob MZ, Ao T, Lang M. Identification and functional characterization of a novel selenocysteine methyltransferase from Brassica juncea L. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6401-6416. [PMID: 31504785 DOI: 10.1093/jxb/erz390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/09/2019] [Indexed: 05/13/2023]
Abstract
Organic selenium (Se), specifically Se-methylselenocysteine (MeSeCys), has demonstrated potential effects in human disease prevention including cancer and the emerging ameliorating effect on Alzheimer's disease. In plants, selenocysteine methyltransferase (SMT) is the key enzyme responsible for MeSeCys formation. In this study, we first isolated a novel SMT gene, designated as BjSMT, from the genome of a known Se accumulator, Brassica juncea L. BjSMT shows high sequence (amino acid) similarity with its orthologues from Brassica napus and Brassica oleracea var. oleracea, which can use homocysteine (HoCys) and selenocysteine (SeCys) as substrates. Similar to its closest homologues, BjSMT also possesses a conserved Thr187 which is involved in transferring a methyl group to HoCys by donating a hydrogen bond, suggesting that BjSMT can methylate both HoCys and SeCys substrates. Using quantitative real-time PCR (qRT-PCR) technology and BjSMT-transformed tobacco (Nicotiana tabacum) plants, we observed how BjSMT responds to selenite [Se(IV)] and selenate [Se(VI)] stress in B. juncea, and how the phenotypes of BjSMT-overexpressing tobacco cultured under selenite stress are affected. BjSMT expression was nearly undetectable in the B. juncea plant without Se exposure, but in the plant leaves it can be rapidly and significantly up-regulated upon a low level of selenite stress, and enormously up-regulated upon selenate treatment. Overexpression of BjSMT in tobacco substantially enhanced tolerance to selenite stress manifested as significantly higher fresh weight, plant height, and chlorophyll content than control plants. In addition, transgenic plants exhibited low glutathione peroxidase activity in response to a lower dose of selenite stress (with a higher dose of selenite stress resulting in a high activity response) compared with the controls. Importantly, the BjSMT-transformed tobacco plants accumulated a high level of Se upon selenite stress, and the plants also had significantly increased MeSeCys production potential in their leaves. This first study of B. juncea SMT demonstrates its potential applications in crop MeSeCys biofortification and phytoremediation of Se pollution.
Collapse
Affiliation(s)
- Meng Chen
- College of Life Science, Hebei Agricultural University, Baoding, China
| | - Liu Zeng
- College of Life Science, Hebei Agricultural University, Baoding, China
| | - Xiangguang Luo
- College of Life Science, Hebei Agricultural University, Baoding, China
| | | | - Tegenbaiyin Ao
- College of Life Science, Hebei Agricultural University, Baoding, China
| | - Minglin Lang
- College of Life Science, Hebei Agricultural University, Baoding, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Hu L, Fan H, Wu D, Wan J, Wang X, Huang R, Liu W, Shen F. Assessing bioaccessibility of Se and I in dual biofortified radish seedlings using simulated in vitro digestion. Food Res Int 2018; 119:701-708. [PMID: 30884706 DOI: 10.1016/j.foodres.2018.10.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 11/26/2022]
Abstract
Selenium (Se) and iodine (I) are essential elements for humans, and biofortification of vegetables with these elements is an effective way to amend their deficiencies in the diet. In this study, the distribution and transformation of Se and I species were investigated in radish seedlings that were simultaneously supplemented with these two elements; the fate and the bioaccessibility of Se and I species were dynamically surveyed in the oral, gastric and intestinal phases using a simulated in vitro digestion method. The radish seedlings were cultivated in hydroponic conditions with Se (IV), Se (VI), I- and IO3- (each 1 mg L-1). The results revealed that Se-methylselenocysteine (MeSeCys), selenocystine (SeCys2), selenomethionine (SeMet) and Se (VI) were present in radish, and MeSeCys was the dominant species in both gastric and intestinal extracts, comprising 32.7 ± 1.5% and 39.6 ± 1.1% of the total content, respectively. I- was also the dominant species, which accounted for 57.1 ± 2.1%, 46.6 ± 1.5% and 68.8 ± 1.8% of the total digested content respectively in the oral, gastric and intestinal extracts. Meanwhile, IO3- was absent and organic I accounted for approximately 20%. The bioaccessibility of Se and I in the intestinal phase reached 95.5 ± 2.5% and 85.8 ± 0.9%, respectively; although after dialysis through membranes, the data reduced to 60.1 ± 2.8% and 39.6 ± 0.8%, respectively. Contents of MeSeCys and I- increased from the oral to intestinal phase and the bioaccessibility of both Se and I in radish was above 85%. So radish is suitable as a potential dietary source of Se and I with biofortification.
Collapse
Affiliation(s)
- Liang Hu
- School of Resource, Environment and Chemical Engineering, Nanchang University, Nanchang 330031, China; Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China
| | - Houbao Fan
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China
| | - Daishe Wu
- School of Resource, Environment and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Jinbao Wan
- School of Resource, Environment and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xianglian Wang
- School of Resource, Environment and Chemical Engineering, Nanchang University, Nanchang 330031, China; Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China
| | - Rongzhen Huang
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China
| | - Wenfei Liu
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China
| | - Fangfang Shen
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China
| |
Collapse
|
7
|
Liu H, Yu F, Shao W, Ding D, Yu Z, Chen F, Geng D, Tan X, Lammi MJ, Guo X. Associations Between Selenium Content in Hair and Kashin-Beck Disease/Keshan Disease in Children in Northwestern China: a Prospective Cohort Study. Biol Trace Elem Res 2018; 184:16-23. [PMID: 28983831 DOI: 10.1007/s12011-017-1169-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/25/2017] [Indexed: 02/05/2023]
Abstract
The objective of this study was to investigate the relationship between selenium content in hair and the incidence of Kashin-Beck disease (KBD) and Keshan disease (KD) in China. A prospective cohort study was conducted among children aged 5-12 years with different levels of low-selenium (group 1, Se ≤ 110 ng/g; group 2, 110 < Se ≤ 150 ng/g; and group 3, 150 < Se ≤ 200 ng/g) or selenium-supplemented (group 4, Se > 200 ng/g) exposure. A person-years approach was used to calculate the incidence and rate of positive clinical signs. Relative risk (RR), attributable risk, and etiologic fraction were used to determine the strength of association between selenium and disease incidence. Seven new KBD cases were diagnosed during 3-year follow-up. Positive clinical signs of KBD were found in 17.78 (95% confidence interval [CI] 14.27-21.29) cases per 100 person-years in group 1, 13.28 (9.82-16.74) in group 2, 12.95 (9.34-16.56) in group 3, and 8.18 (5.50-10.85) in group 4. Compared with group 4, the RR (95% CI) of groups 1, 2, and 3 were 2.17 (1.48-3.19), 1.62 (1.07-2.47), and 1.58 (1.03-2.43), respectively. Positive clinical signs of KD were 25.90 (18.62-33.18) cases per 100 person-years in group 1, 5.66 (1.26-10.06) in group 2, 4.60 (0.20-9.00) in group 3, and 14.62 (8.54-20.69) in group 4. Compared with group 4, the RR (95% CI) were 1.77 (1.07-2.93), 0.39 (0.16-0.93), and 0.31 (0.11-0.89), respectively. In children, the onset of KBD was negatively correlated with selenium content within a certain range. However, there may be a U-shaped association between selenium content and KD in children.
Collapse
Affiliation(s)
- Huan Liu
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission of People's Republic of China, Xi'an Jiaotong University, No.76 Yan Ta West Road, Xi'an, Shannxi, 710061, People's Republic of China
| | - Fangfang Yu
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission of People's Republic of China, Xi'an Jiaotong University, No.76 Yan Ta West Road, Xi'an, Shannxi, 710061, People's Republic of China
| | - Wanzhen Shao
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission of People's Republic of China, Xi'an Jiaotong University, No.76 Yan Ta West Road, Xi'an, Shannxi, 710061, People's Republic of China
| | - Dexiu Ding
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission of People's Republic of China, Xi'an Jiaotong University, No.76 Yan Ta West Road, Xi'an, Shannxi, 710061, People's Republic of China
| | - Zhidao Yu
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission of People's Republic of China, Xi'an Jiaotong University, No.76 Yan Ta West Road, Xi'an, Shannxi, 710061, People's Republic of China
| | - Fengshi Chen
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission of People's Republic of China, Xi'an Jiaotong University, No.76 Yan Ta West Road, Xi'an, Shannxi, 710061, People's Republic of China
| | - Dong Geng
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission of People's Republic of China, Xi'an Jiaotong University, No.76 Yan Ta West Road, Xi'an, Shannxi, 710061, People's Republic of China
| | - Xiwang Tan
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission of People's Republic of China, Xi'an Jiaotong University, No.76 Yan Ta West Road, Xi'an, Shannxi, 710061, People's Republic of China
| | - Mikko J Lammi
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission of People's Republic of China, Xi'an Jiaotong University, No.76 Yan Ta West Road, Xi'an, Shannxi, 710061, People's Republic of China.
- Department of Integrative Medical Biology, University of Umeå, 901 87, Umeå, Sweden.
| | - Xiong Guo
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission of People's Republic of China, Xi'an Jiaotong University, No.76 Yan Ta West Road, Xi'an, Shannxi, 710061, People's Republic of China.
| |
Collapse
|
8
|
Dinh QT, Cui Z, Huang J, Tran TAT, Wang D, Yang W, Zhou F, Wang M, Yu D, Liang D. Selenium distribution in the Chinese environment and its relationship with human health: A review. ENVIRONMENT INTERNATIONAL 2018; 112:294-309. [PMID: 29438838 DOI: 10.1016/j.envint.2017.12.035] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 05/07/2023]
Abstract
This paper reviewed the Se in the environment (including total Se in soil, water, plants, and food), the daily Se intake and Se content in human hair were also examined to elucidate Se distribution in the environment and its effects on human health in China. Approximately 51% of China is Se deficiency in soil, compared with 72% in the survey conducted in 1989. Low Se concentrations in soil, water, plants, human diet and thus human hair were found in most areas of China. The only significant difference was observed between Se-rich and Se-excessive areas for Se contents in water, staple cereal, vegetables, fruits, and animal-based food, no remarkable contrast was found among other areas (p>0.05). This study also demonstrated that 39-61% of Chinese residents have lower daily Se intakes according to WHO/FAO recommended value (26-34μg/day). Further studies should focus on thoroughly understanding the concentration, speciation, and distribution of Se in the environment and food chain to successfully utilize Se resources, remediate Se deficiency, and assess the Se states and eco-effects on human health.
Collapse
Affiliation(s)
- Quang Toan Dinh
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Faculty of Natural Science, Thu Dau Mot University, Thu Dau Mot city, Binh Duong, Viet Nam
| | - Zewei Cui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Thi Anh Thu Tran
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Faculty of Natural Science, Thu Dau Mot University, Thu Dau Mot city, Binh Duong, Viet Nam
| | - Dan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenxiao Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengke Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dasong Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Wang Q, Sun LC, Liu YQ, Lu JX, Han F, Huang ZW. The Synergistic Effect of Serine with Selenocompounds on the Expression of SelP and GPx in HepG2 Cells. Biol Trace Elem Res 2016; 173:291-6. [PMID: 26944060 DOI: 10.1007/s12011-016-0665-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 02/24/2016] [Indexed: 01/27/2023]
Abstract
We explored the synergistic effect of serine combined with several selenocompounds or used alone on the expression of selenoprotein P (SelP) and glutathione peroxidase (GPx) in this study. We first compared the SelP and GPx expression difference between HepG2 and Hela cells treated with serine and finally chose HepG2 as experimental cell. In the serine-used-alone experiment, three kinds of selenium nutritional models (low-, adequate-, and high-selenium) were established and serine was 10 times gradient diluted (0.01 to 100 μmol/L). In the combined experiment, the selenocompound doses were set as 0.01, 0.1, and 1 μmol Se/L and serine was set according to its molar ratio with the selenocompounds. We found that SelP and GPx concentrations in the low-, adequate-, and high-selenium models increased following with serine dose. When the concentration of sodium selenite and SeMet was 1 μmol Se/L while MeSeCys was 0.1 and 1 μmol Se/L, SelP concentrations for serine combined with selenocompounds groups were significantly higher than that of selenocompounds used alone. When the concentration of sodium selenite was 0.1 μmol Se/L, SeMet was 0.1 and 1 μmol Se/L while MeSeCys was 0.01 and 1 μmol Se/L, GPx concentrations for serine combined with selenocompounds groups were significantly higher than that of selenocompounds used alone. Our preliminary result indicated the beneficial effect of serine on the expression of SelP and GPx, which suggested that it might be a candidate for combined selenium supplement.
Collapse
Affiliation(s)
- Qin Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Li-Cui Sun
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Yi-Qun Liu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Jia-Xi Lu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Feng Han
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Zhen-Wu Huang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| |
Collapse
|