1
|
Wang B, Li Y, Wang P, Hua Z, Zhang S, Yang X, Zhang C. Selenium-enriched yeast regulates aquaporins to alleviate atrazine-induced hepatic ionic homeostasis disturbance in Japanese quails. Int J Biol Macromol 2024; 280:135720. [PMID: 39299412 DOI: 10.1016/j.ijbiomac.2024.135720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/08/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Atrazine (ATR), a commonly used herbicide, carries a risk to the health of humans and animals due to its persistence in the environment and accumulation in the body. The main metabolic processes of ATR was occurred in the liver. Therefore, the accumulation of ATR in the body can cause serious hepatic injury. This research aimed to clarify the toxicological effect of ATR and explore the potential protective benefits of selenium-enriched yeast (Yeast-Se) in alleviating liver toxicity induced by ATR. Quails were treated with ATR and Yeast-Se for 28 days. The results indicated that ATR inhibited quail growth and development and caused liver dysfunction. Pathological analysis showed that ATR led to central vein congestion and gallbladder epithelial cells shedding and necrosis. In addition, ATR significantly changed hepatic ion content (Na+, K+, Cl-, Ca2+, Mg2+) and decreased Na+-K+-ATPase and Ca2+/Mg2+-ATPase activities. Notably, supplementary Yeast-Se protects against ATR-induced liver ionic disorder by reversing ATPase activity and increasing ATPase subunits expression. In addition, supplementary Yeast-Se significantly up-regulated the expression of aquaporins (AQPs). In summary, these results indicated that Yeast-Se may regulates AQPs to alleviate ATR-induced ionic homeostasis disturbance in liver.
Collapse
Affiliation(s)
- Bo Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yanan Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Peilin Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Zeao Hua
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - ShanShan Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China.
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Zhu H, Chen S, Li R, Cheng Y, Song H, Wu S, Zhong Y, Liu Y, Cao C. Selenium-rich yeast counteracts the inhibitory effect of nanoaluminum on the formation of porcine neutrophil extracellular traps. Res Vet Sci 2023; 161:138-144. [PMID: 37384972 DOI: 10.1016/j.rvsc.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
Aluminum is widely used in daily life due to its excellent properties. However, aluminum exposure to the environment severely threatens animal and human health. Conversely, selenium (Se) contributes to maintaining the balance of the immune system. Neutrophils exert immune actions in several ways, including neutrophil extracellular traps (NETs) that localize and capture exogenous substances. Despite the recent investigations on the toxic effects of aluminum and its molecular mechanisms, the immunotoxicity of aluminum nanoparticles on pigs and the antagonistic effect of selenium on aluminum toxicity are poorly understood. Here, we treated porcine peripheral blood neutrophils with zymosan for 3 h to induce NETs formation. Then, we investigated the effect of nanoaluminum on NETs formation in pigs and its possible molecular mechanisms. Microscopy observations revealed that NETs formation was inhibited by nanoaluminum. Using a multifunctional microplate reader, the production of extracellular DNA and the burst of reactive oxygen species (ROS) in porcine neutrophils were inhibited by nanoaluminum. Western blot analyses showed that nanoaluminum caused changes in amounts of cellular selenoproteins. After Se supplementation, the production of porcine NETs, the burst of ROS, and selenoprotein levels were restored. This study indicated that nanoaluminum inhibited the zymosan-induced burst of ROS and release of NETs from porcine neutrophils, possibly through the selenoprotein signaling pathway. In contrast, Se supplementation reduced the toxic effects of nanoaluminum and restored NETs formation.
Collapse
Affiliation(s)
- Huquan Zhu
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Siqiiu Chen
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Ruobin Li
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Yun Cheng
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Huanni Song
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Shuiling Wu
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Yueyao Zhong
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China
| | - Yang Liu
- School of Food Science and Engineering, Foshan University/Quality Control Technical Center (Foshan) of National Famous and Special Agricultural Products (CAQS-GAP-KZZX043)/South China Food Safety Research Center, Foshan 528225, Guangdong Province, China
| | - Changyu Cao
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, China; Foshan University Veterinary Teaching Hospital, Foshan 528225, Guangdong Province, China.
| |
Collapse
|
3
|
Wang B, Zheng Z, Chen L, Zhang W, He Y, Wu B, Ji R. Transcriptomics reveals key regulatory pathways and genes associated with skin diseases induced by face paint usage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 890:164374. [PMID: 37236445 DOI: 10.1016/j.scitotenv.2023.164374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The use of face paint cosmetics can cause skin diseases in opera performers due to the presence of heavy metals and other toxic ingredients in the cosmetics. However, the underlying molecular mechanism for these diseases remains unknown. Here we examined the transcriptome gene profile of human skin keratinocytes exposed to artificial sweat extracts of face paints, and identified the key regulatory pathways and genes, using RNA sequencing technique. Bioinformatics analyses suggested that the face paint exposure induced the differentially expression of 1531 genes and enriched inflammation-relevant TNF and IL-17 signaling pathways after just 4 h of exposure. Inflammation-relevant genes CREB3L3, FOS, FOSB, JUN, TNF, and NFKBIA were identified as the potential regulatory genes, and SOCS3 capable to prevent inflammation-induced carcinogenesis as the hub-bottleneck gene. Long-term exposure (24 h) could exacerbate inflammation, accompanied by interference in cellular metabolism pathways, and the potential regulatory genes (ATP1A1, ATP1B1, ATP1B2, FXYD2, IL6, and TNF) and hub-bottleneck genes (JUNB and TNFAIP3) were all related to inflammation induction and other adverse responses. We proposed that the exposure to face paint might cause the inflammatory factors TNF and IL-17, which are encoded by the genes TNF and IL17, to bind to receptors and activate TNF and IL-17 signaling pathways, leading to the expression of cell proliferation factors (CREB and AP-1) and proinflammatory mediators including transcription factors (FOS, JUN, and JUNB), inflammatory factors (TNF-α and IL6), and intracellular signaling factors (TNFAIP3). This finally resulted in cell inflammation, apoptosis, and other skin diseases. TNF was identified as the key regulator and connector in all the enriched signaling pathways. Our study provides the first insights into the cytotoxicity mechanism of face paints to skin cells and highlights the need for stricter regulations in face paint safety.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhaohao Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenhui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China.
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| |
Collapse
|
4
|
Oner P, Er B, Orhan C, Sahin K. Combination of Phycocyanin, Zinc, and Selenium Improves Survival Rate and Inflammation in the Lipopolysaccharide-Galactosamine Mouse Model. Biol Trace Elem Res 2023; 201:1377-1387. [PMID: 36175742 DOI: 10.1007/s12011-022-03433-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/21/2022] [Indexed: 02/07/2023]
Abstract
Sepsis is related to systemic inflammation and oxidative stress, the primary causes of death in intensive care units. Severe functional abnormalities in numerous organs can arise due to sepsis, with acute lung damage being the most common and significant morbidity. Spirulina, blue-green algae with high protein, vitamins, phycocyanin, and antioxidant content, shows anti-inflammatory properties by decreasing the release of cytokines. In addition, zinc (Zn) and selenium (Se) act as an antioxidant by inhibiting the oxidation of macromolecules, as well as the inhibition of the inflammatory response. The current study aimed to examine the combined properties of Zn, Se, and phycocyanin oligopeptides (ZnSePO) against lipopolysaccharide-D-galactosamine (LPS-GalN)-induced septic lung injury through survival rate, inflammatory, and histopathological changes in Balb/c mice. A total of 30 mice were allocated into three groups: normal control, LPS-GalN (100 ng of LPS plus 8 mg of D-galactosamine), LPS-GalN + ZnSePO (ZnPic, 52.5 µg/mL; SeMet, 0.02 µg/mL; and phycocyanin oligopeptide (PO), 2.00 mg/mL; at 1 h before the injection of LPS-GalN). Lung tissue from mice revealed noticeable inflammatory reactions and typical interstitial fibrosis after the LPS-GalN challenge. LPS-GalN-induced increased mortality rate and levels of IL-1, IL-6, IL-10, TGF-β, TNF-α, and NF-κB in lung tissue. Moreover, treatment of septic mice LPS-GalN + ZnSePO reduced mortality rates and inflammatory responses. ZnSePO considerably influenced tissue cytokine levels, contributing to its capacity to minimize acute lung injury (ALI) and pulmonary inflammation and prevent pulmonary edema formation in LPS-GalN-injected mice. In conclusion, ZnSePO treatment enhanced the survival rate of endotoxemia mice via improving inflammation and oxidative stress, indicating a possible therapeutic effect for patients with septic infections.
Collapse
Affiliation(s)
- Pinar Oner
- Department of Microbiology, Fethi Sekin City Hospital, Elazig, Turkey
| | - Besir Er
- Division of Biology, Faculty of Science, Firat University, 23119, Elazig, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey.
| |
Collapse
|
5
|
Sun J, Cai W, Wang Y, Niu H, Chen X, Han X. The Effect of Decreased Ca ++/Mg ++ ATPase Activity on Lactobacillus delbrueckii subsp. bulgaricus sp1.1 Survival during Spray Drying. Foods 2023; 12:foods12040787. [PMID: 36832862 PMCID: PMC9955740 DOI: 10.3390/foods12040787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Compared with the commonly used technique of freeze-drying, spray drying has lower energy costs. However, spray drying also has a fatal disadvantage: a lower survival rate. In this study, the survival of bacteria in a spray-drying tower decreased as the water content was reduced. The water content of 21.10% was the critical point for spray drying Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) sp1.1 based on sampling in the tower. Based on the relationship between the moisture content of spray drying and the survival rate, the water content of 21.10% was also the critical point for the change in the survival rate during spray drying. Proteomic analysis was used to investigate the reasons for L. bulgaricus sp1.1 inactivation during and after spray drying. Gene Ontology (GO) enrichment revealed that differentially expressed proteins were mainly associated with the cell membrane and transport. In particular, proteins related to metal ion transport included those involved in the transport of potassium, calcium and magnesium ions. The protein-protein interaction (PPI) network revealed that Ca++/Mg++ adenosine triphosphatase (ATPase) may be a key protein. Ca++/Mg++ ATPase activity decreased substantially during spray drying (p < 0.05). Supplementation with Ca++ and Mg++ significantly increased the expression of ATPase-related genes and enzyme activity (p < 0.05). The Ca++/Mg++ ATPase activity of L. bulgaricus sp1.1 was enhanced by increasing the intracellular Ca++ or Mg++ concentration, thus increasing the survival of spray-dried LAB. Bacterial survival rates were increased to 43.06% with the addition of Ca++ and to 42.64% with the addition of Mg++, respectively. Ca++/Mg++ ATPase may be the key to the damage observed in spray-dried bacteria. Furthermore, the addition of Ca++ or Mg++ also reduced bacterial injury during spray drying by enhancing the activity of Ca++/Mg++ ATPase.
Collapse
Affiliation(s)
| | | | | | | | | | - Xue Han
- Correspondence: ; Tel.: +86-133-1365-9156
| |
Collapse
|
6
|
Zhao Y, Zhang H, Hao D, Wang J, Zhu R, Liu W, Liu C. Selenium regulates the mitogen-activated protein kinase pathway to protect broilers from hexavalent chromium-induced kidney dysfunction and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113629. [PMID: 35576799 DOI: 10.1016/j.ecoenv.2022.113629] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/27/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Hexavalent chromium [Cr (VI)] is a common environmental pollutant. Although selenium (Se) can antagonize the toxicity of Cr (VI), the specific underlying mechanism has not been identified. To investigate this mechanism, we used potassium dichromate (K2Cr2O7) and selenium-rich yeast (SeY) to construct single Cr (VI)- and combined Se/Cr (VI)-exposed broiler models during a 42-day period. Broilers were randomly assigned to the control (C), SeY (Se), SeY + Cr (VI) (Se/Cr), and Cr (VI) (Cr) groups. The antagonistic mechanisms of Se and Cr (VI) were evaluated using histopathological evaluation, serum and tissue biochemical tests, real-time fluorescence quantitative polymerase chain reaction, and western blotting. The results suggested that Se alleviated the morphological and structural damage to renal tubules and glomeruli, while reducing the organ index, creatinine levels, and blood urea nitrogen levels in the kidneys of Cr (VI)-exposed broilers. Furthermore, Cr (VI) reduced the levels of superoxide dismutase and glutathione, and increased the levels of malondialdehyde, in broiler kidney tissues. However, Se alleviated Cr (VI)-induced oxidative stress by increasing the levels of superoxide dismutase and glutathione, and decreasing the levels of malondialdehyde, within a certain range. Compared to the C group, the levels of p38, JNK, p-p38, p-JNK, p-p38/p38, and p-JNK/JNK significantly increased, whereas those of ERK, p-ERK, and p-ERK/ERK decreased, in the Cr group. Compared to the Cr group, the levels of p38, JNK, p-p38, p-JNK, p-p38/p38, and p-JNK/JNK significantly decreased, whereas those of ERK, p-ERK, and p-ERK/ERK increased, in the Se/Cr group. Furthermore, the levels of p53, c-Myc, Bax, Cyt-c, caspase-9, and caspase-3 significantly increased, and those of Bcl-2 and Bcl-2/Bax significantly decreased, following Cr (VI) exposure, while Se restored the expression of these genes. In conclusion, our findings suggest that SeY can protect against Cr (VI)-induced dysfunction and apoptosis by regulating the mitogen-activated protein kinase pathway activated by oxidative stress in broiler kidney tissues.
Collapse
Affiliation(s)
- Yanbing Zhao
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Huan Zhang
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Dezheng Hao
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Jingqiu Wang
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Ruixin Zhu
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Weina Liu
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Ci Liu
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China.
| |
Collapse
|
7
|
Lin T, Nie G, Hu R, Luo J, Xing C, Hu G, Zhang C. Involvement of calcium homeostasis and unfolded protein response in autophagy co-induced by molybdenum and cadmium in duck (Anas platyrhyncha) brain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38303-38314. [PMID: 35076842 DOI: 10.1007/s11356-022-18738-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Excess molybdenum (Mo) and cadmium (Cd) are harmful to animals, but neurotoxicity caused by Mo and Cd co-exposure in ducks is yet unknown. To assess joint impacts of Mo and Cd on autophagy via calcium homeostasis and unfolded protein response (UPR) in duck brain, 40 healthy 7-day-old ducks (Anas platyrhyncha) were assigned to 4 groups at random and fed diets supplemented with different doses of Mo or/and Cd for 16 weeks, respectively. Brain tissues were excised for experiment. Results exhibited that Mo or/and Cd disturbed calcium homeostasis by decreased ATPase activities and increased calcium (Ca) content, and upregulated calcium homeostasis-related factors Ca2+/CAM-dependent kinase IIɑ (CaMKIIɑ), calcineurin (CaN), inositol-1,4,5-trisphosphate receptor (IP3R), and calreticulin (CRT) expression levels. Meanwhile, the upregulation of UPR-related factor expression levels indicated that Mo or/and Cd activated UPR. Moreover, Mo or/and Cd triggered autophagy through promoting the number of autophagosomes and LC3II immunofluorescence intensity and altering autophagy key factor expression levels. Correlation analysis showed that there were obvious connections among Ca2+ homeostasis, endoplasmic reticulum (ER) stress, and autophagy induced by Mo or/and Cd. Thence, it can be speculated that autophagy initiated by Mo or/and Cd may be associated with interfering Ca2+ homeostasis and triggering UPR.
Collapse
Affiliation(s)
- Tianjin Lin
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Gaohui Nie
- School of Information Technology, Jiangxi University of Finance and Economics, No. 665 Yuping West Street, Economic and Technological Development District, Nanchang, 330032, Jiangxi, People's Republic of China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China.
| |
Collapse
|
8
|
Lin T, Tao J, Chen Y, Zhang Y, Li F, Zhang Y, Han X, Zhao Z, Liu G, Li H. Selenium Deficiency Leads to Changes in Renal Fibrosis Marker Proteins and Wnt/β-Catenin Signaling Pathway Components. Biol Trace Elem Res 2022; 200:1127-1139. [PMID: 33895963 DOI: 10.1007/s12011-021-02730-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/18/2021] [Indexed: 01/03/2023]
Abstract
Renal fibrosis is the final result of the progression of chronic kidney disease (CKD) to end-stage renal disease (ESRD). Earlier studies confirmed that selenium (Se) displays a close association with kidney diseases. However, the correlation between Se and fibrosis has rarely been explored. Thus, this article mainly aimed to investigate the effect of Se deficiency on renal fibrosis and the Wnt/β-catenin signaling pathway. Twenty BALB/c mice were fed a diet containing 0.02-mg/kg Se (Se-deficient diet) or 0.18-mg/kg Se (standard diet) for 20 weeks. A human glomerular mesangial cell (HMC) cell line was transfected with lentiviral TRNAU1AP-shRNA vector to establish a stable Se deficiency model in vitro. As indicated in this study, the glutathione (GSH) content in the Se-deficient group displayed an obvious decline compared with that in the control group, whereas the content of malondialdehyde (MDA) was obviously elevated. The results of Masson staining showed fibrosis around the renal tubules, and the results of immunohistochemistry showed that the area of positive fibronectin expression increased. In the Se-deficient group, the levels of collagen I, collagen III, matrix metalloproteinase 9 (MMP9), and other fibrosis-related proteins changed significantly in vivo and in vitro. Compared with the control group, the TRNAU1AP-shRNA group showed markedly reduced cell proliferation and migration abilities. Our data indicate that Se deficiency can cause kidney damage and renal fibrosis. Furthermore, the Wnt pathway is critical for the development of tissue and organ fibrosis. The data of this study demonstrated that the expression of Wnt5a, β-catenin, and dishevelled 1 (Dvl-1) was significantly upregulated in the Se-deficient group. Therefore, the Wnt/β-catenin pathway may play an important role in renal fibrosis caused by Se deficiency.
Collapse
Affiliation(s)
- Tingting Lin
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Baojian Road 157, Nangang District, Harbin City, 150086, Heilongjiang, China
| | - Jiaqi Tao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Baojian Road 157, Nangang District, Harbin City, 150086, Heilongjiang, China
| | - Ying Chen
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Baojian Road 157, Nangang District, Harbin City, 150086, Heilongjiang, China
| | - Yitong Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Baojian Road 157, Nangang District, Harbin City, 150086, Heilongjiang, China
| | - Fenglan Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Baojian Road 157, Nangang District, Harbin City, 150086, Heilongjiang, China
| | - Yutong Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Baojian Road 157, Nangang District, Harbin City, 150086, Heilongjiang, China
| | - Xueqing Han
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Baojian Road 157, Nangang District, Harbin City, 150086, Heilongjiang, China
| | - Zihui Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Baojian Road 157, Nangang District, Harbin City, 150086, Heilongjiang, China
| | - Guiyan Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Baojian Road 157, Nangang District, Harbin City, 150086, Heilongjiang, China
| | - Hui Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Baojian Road 157, Nangang District, Harbin City, 150086, Heilongjiang, China.
| |
Collapse
|
9
|
Zhang C, Lin T, Nie G, Hu R, Pi S, Wei Z, Wang C, Li G, Hu G. In vivo assessment of molybdenum and cadmium co-induce nephrotoxicity via causing calcium homeostasis disorder and autophagy in ducks (Anas platyrhyncha). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113099. [PMID: 34963067 DOI: 10.1016/j.ecoenv.2021.113099] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Excess molybdenum (Mo) and cadmium (Cd) are widespread environmental and industrial metal pollutants. To evaluate the combined effects of Mo and Cd on calcium homeostasis and autophagy in duck kidneys. 160 healthy 7-day-old ducks (Anas platyrhyncha) were randomized into 4 groups and given to a basic diet, adding various doses of Mo or/and Cd for 16 weeks. On the 4th, 8th, 12th and 16th weeks, kidney tissues were collected. The study exhibited that Mo or/and Cd caused histological abnormality, reduced the activities of Ca2+ ATPase, Mg2+ ATPase, Na+-K+ ATPase and Ca2+-Mg2+ ATPase, K and Mg contents, and increased Na and Ca contents, upregulated CaMKKβ, CaMKIIɑ, CaN, IP3R, GRP78, GRP94, CRT mRNA levels and CaMKIIɑ, CaN, IP3R protein levels. Moreover, exposure to Mo or/and Cd notably promoted the amount of autophagosomes and LC3II immunofluorescence, upregulated AMPKα1, ATG5, Beclin-1, LC3A, LC3B mRNA levels and Beclin-1, LC3II/LC3I protein levels, downregulated mTOR, Dynein, P62 mRNA levels and P62 protein level. The changes of above indicators in combined group were more obvious. Overall, the results suggest that Mo and Cd co-exposure may can synergistically induce nephrotoxicity via causing calcium homeostasis disorder and autophagy in ducks.
Collapse
Affiliation(s)
- Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Tianjin Lin
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Gaohui Nie
- School of Information Technology,Jiangxi University of Finance and Economics, No. 665 Yuping West street, Economic and Technological Development District, Nanchang 330032, Jiangxi, PR China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Shaoxing Pi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Zejing Wei
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chang Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
10
|
Zhang Y, Qi X, Chen X, Zhang J, Zhang W, Lin H. Dietary selenomethionine ameliorates lipopolysaccharide-induced renal inflammatory injury in broilers via regulating the PI3K/AKT pathway to inhibit necroptosis. Food Funct 2021; 12:4392-4401. [PMID: 33908541 DOI: 10.1039/d1fo00424g] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Selenomethionine (SeMet) has antioxidant and anti-inflammatory effects, as a widely used organic Se source in food supplements, and its inhibitory effect on the prevention and treatment of renal inflammatory injury is unclear. Here, in order to explore the protective effect of SeMet on kidney tissue of broilers and determine its potential molecular mechanism, we took broilers as the research object, lipopolysaccharide (LPS) was used as the source of stimulation, and the model was established by adding SeMet to the diet. The histopathological observation indicated that SeMet alleviated the LPS-induced characteristic changes of renal inflammatory injury. Besides, SeMet inhibited LPS-induced PI3K, AKT, caspase 8 and IκB-α downregulation, the necroptosis marker genes (FADD, RIP1, RIP3, MLKL and TNF-α), pro-inflammatory factors (NF-κB, PTGEs, COX-2, iNOS, IL-1β and IL-6) and HSP60, HSP70 and HSP90 overexpression. We concluded that SeMet ameliorates LPS-induced renal inflammatory injury in broilers by inhibiting necroptosis via the regulation of the PI3K/Akt pathway. Thus, we speculated that dietary SeMet may be a potential new strategy for the treatment of renal injury.
Collapse
Affiliation(s)
- Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | | | | | | | | | | |
Collapse
|
11
|
Cao C, Li X, Fu Q, Wang K, Li X. Selenium-Rich-Yeast Protects Against Aluminum-Induced Activating Nuclear Xenobiotic Receptors and Triggering Inflammation and Cytochromes P450 Systems in Mice Heart. Biol Trace Elem Res 2020; 194:244-250. [PMID: 31230209 DOI: 10.1007/s12011-019-01763-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/26/2019] [Indexed: 02/08/2023]
Abstract
Aluminum (Al) poisoning is linked to the development of cardiovascular diseases, and dietary supplementation with selenium-rich-yeast (SeY) has been shown to prevent inflammatory conditions. We evaluated the preventive effect of SeY on Al-induced cardiotoxicity, and the possible underlying mechanisms. Mice were treated with SeY (0.1 mg/kg) and/or Al (10 mg/kg) by oral gavage for 4 weeks. Histopathological damage was observed in the heart of Al-treated mice, in addition to the transcriptional up/downregulation of nuclear xenobiotic receptors (NXRs), inflammatory cytokines and 15 CYP450s genes. SeY significantly inhibited these Al-induced histopathological and molecular changes, and restored these indicators to the control levels. These results suggest that SeY exerts a cardio-protective effect against Al-induced toxicity through the NXR system, inflammatory cytokines, and CYP450s genes.
Collapse
Affiliation(s)
- Changyu Cao
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, People's Republic of China
| | - Xiaowen Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, People's Republic of China
| | - Qiang Fu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, People's Republic of China
| | - Kai Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, People's Republic of China
| | - Xinran Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, People's Republic of China.
| |
Collapse
|
12
|
Liu Z, Zhang F, Lu P, Zhao R, Zhang H, Song B, Li L, Wu Z, Wu R. Selenium-Yeast Alleviated Inflammatory Damage Caused by Lead via Inhibiting Ras/ERK Pathway and Inflammatory Factors in Chicken Skeletal Muscles. Biol Trace Elem Res 2019; 190:493-500. [PMID: 30604133 DOI: 10.1007/s12011-018-1558-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate the ameliorative effects of selenium-enriched yeast (Se-yeast) on the inflammatory damage induced by lead (Pb) in chicken skeletal muscles. A total of 108 1-day-old broiler chickens were randomly allocated into four groups (n = 27/group): the control group (C group), the Se-yeast-supplemented group (Se group), the lead-treated group (Pb group), and finally the Se- and Pb-combined group (Pb/Se group). The C group was fed with a basic diet comprising 0.049 mg/kg Se and 0.1 mg/kg Pb while the Se group was fed a Se-yeast diet containing 0.30 mg/kg Se and 0.1 mg/kg Pb. Similarly, the Pb group was fed a Pb acetate diet containing 0.049 mg/kg Se and 350 mg/kg Pb while the Pb/Se group was fed with a Se-yeast diet containing 0.30 mg/kg Se and 350 mg/kg Pb. On days 7, 21, and 35 after commencing the experiment, nine chicks belonging to each group were euthanized and the samples were analyzed by employing the techniques of inductively coupled plasma mass spectrometry and real-time quantitative PCR, along with Western blotting. The results indicated that excess Pb increased the nitric oxide concentration, enhanced the activity of inducible nitric oxide synthase (iNOS), and the mRNA levels of interleukin 1β (IL-1β), interleukin 4 (IL-4), interleukin 10 (IL-10), and interferon gamma (IFN-γ) in a time-dependent manner. Further, it was found that Se reduced damage caused by Pb by decreasing the expression of inflammatory factors in chicken skeletal muscles. Taken together, the results from this study provide the theoretical basis for an alleviate effect of Se on Pb-induced inflammatory damage in chicken skeletal muscles, mediated by inhibiting the Ras/extracellular signal-regulated kinase (ERK) pathway and the inflammatory factors.
Collapse
Affiliation(s)
- Zhe Liu
- Colloge of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, 2 Xinyang Road, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Feng Zhang
- Department of Osteology, The Daqing Oil Field General Hospital, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Ping Lu
- China Animal Health And Epidemiology Center, Qingdao, 266000, People's Republic of China
| | - Rui Zhao
- Colloge of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, 2 Xinyang Road, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Hua Zhang
- Colloge of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, 2 Xinyang Road, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Baifen Song
- Colloge of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, 2 Xinyang Road, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Liyang Li
- Colloge of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, 2 Xinyang Road, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Zhijun Wu
- Colloge of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, 2 Xinyang Road, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, People's Republic of China.
| |
Collapse
|
13
|
Zhao H, Tong G, Liu J, Wang J, Zhang H, Bai J, Hou L, Zhang Z. IP3R and RyR channels are involved in traffic-related PM 2.5-induced disorders of calcium homeostasis. Toxicol Ind Health 2019; 35:339-348. [PMID: 31023176 DOI: 10.1177/0748233719843763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Traffic-related PM2.5 can result in immune system damage and diseases; however, the possible mechanism of its effect remains unclear. Calcium (Ca2+) is a critical signaling molecule in a variety of cells. Indeed, Ca2+ is involved in numerous basic functions, including cell growth and death. In this study, Jurkat T cells were used to explore the possible mechanisms of PM2.5-elicited intracellular Ca2+signal responses. The results indicate that PM2.5 could raise the level of intracellular Ca2+ concentration ([Ca2+]i). The [Ca2+]i in Jurkat T cells significantly decreased after treatment with heparin as an inhibitor of inositol trisphosphate receptors (IP3 R), or procaine as an inhibitor of ryanodine receptors (RyR). The expression of calmodulin (CAM) protein decreased in a time-dependent manner after exposure to PM2.5, whereas the activity of Ca2+-Mg2+-ATPase seemed to show a slight drop trend after exposure to PM2.5. Our findings demonstrate that PM2.5 stimulation to Jurkat T cells would result in an increase in [Ca2+]i, which is modulated by IP3 R and RyR, as well as CAM.
Collapse
Affiliation(s)
- Huichao Zhao
- 1 Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Guoqiang Tong
- 1 Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jiejing Liu
- 1 Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jing Wang
- 1 Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Hongmei Zhang
- 1 Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Jianying Bai
- 1 Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| | - Lifang Hou
- 2 Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,3 Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zhihong Zhang
- 1 Department of Environmental Health, School of Public Health, Shanxi Medical University, China
| |
Collapse
|
14
|
Wang J, Zhang T, Liu X, Fan H, Wei C. Aqueous extracts of se-enriched Auricularia auricular attenuates D-galactose-induced cognitive deficits, oxidative stress and neuroinflammation via suppressing RAGE/MAPK/NF-κB pathway. Neurosci Lett 2019; 704:106-111. [PMID: 30953738 DOI: 10.1016/j.neulet.2019.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/21/2019] [Accepted: 04/02/2019] [Indexed: 01/28/2023]
Abstract
Aging is a natural process that accompanied with progressive cognitive deficits and functional decline in organisms. Selenium (Se), an essential trace element, exhibits antioxidative and anti-inflammatory abilities. Here, our study aimed to investigate the protective effects of aqueous extracts of Se-enriched Auricularia auricular (AESAA) on aging mice induced by d-galactose (D-gal) and explore its potential mechanism. d-gal was administered (100 mg/kg) subcutaneously for 12 weeks to establish an aging mouse model. Morris water maze (MWM) test was conducted to assess the cognitive deficits of mice. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) activities and malondialdehyde (MDA) level in hippocampus were measured to evaluate oxidative stress. The contents of pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) in hippocampus were determined by ELISA method. Further, hippocampal levels of RAGE, p-Erk, p-JNK, p-P38 and p-NF-κB were detected by western blot and the RAGE expression was confirmed by immunohistochemistry. We found that AESAA supplementation significantly decreased d-gal-induced cognitive deficits, as evidenced by better performance in the MWM test. Furthermore, AESAA treatment attenuated oxidative stress and decreased the contents of pro-inflammatory cytokines in hippocampus. Importantly, AESAA inhibited the up-regulation of RAGE, p-Erk, p-JNK, p-P38 in the hippocampus of d-gal treated mice. Moreover, the results also indicated that AESAA inhibited p-NF-κB and p-IκBα expression. In conclusion, our findings suggest that AESAA effectively decreases cognitive impairment, alleviates oxidative damage and neuroinflammation in mice through s RAGE/MAPK/NF-κB signaling pathway, which provides a potential therapy for delaying the aging process.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Agricultural Quality Standards and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Tianzhu Zhang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiaoxiao Liu
- Institute of Agricultural Quality Standards and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Huimei Fan
- Institute of Agricultural Quality Standards and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Chunyan Wei
- Institute of Agricultural Quality Standards and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|