1
|
Yu N, Su M, Wang J, Liu Y, Yang J, Zhang J, Wang M. Long-Term Exposure of Fresh and Aged Nano Zinc Oxide Promotes Hepatocellular Carcinoma Malignancy by Up-Regulating Claudin-2. Int J Nanomedicine 2024; 19:9989-10008. [PMID: 39371475 PMCID: PMC11453161 DOI: 10.2147/ijn.s478279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024] Open
Abstract
Background Tumor development and progression is a long and complex process influenced by a combination of intrinsic (eg, gene mutation) and extrinsic (eg, environmental pollution) factors. As a detoxification organ, the liver plays an important role in human exposure and response to various environmental pollutants including nanomaterials (NMs). Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and remains a serious threat to human health. Whether NMs promote liver cancer progression remains elusive and assessing long-term exposure to subtoxic doses of nanoparticles (NPs) remains a challenge. In this study, we focused on the promotional effects of nano zinc oxide (nZnO) on the malignant progression of human HCC cells HepG2, especially aged nZnO that has undergone physicochemical transformation. Methods In in vitro experiments, we performed colony forming efficiency, soft agar colony formation, and cell migration/invasion assays on HepG2 cells that had been exposed to a low dose of nZnO (1.5 μg/mL) for 3 or 4 months. In in vivo experiments, we subcutaneously inoculated HepG2 cells that had undergone long-term exposure to nZnO for 4 months into BALB/c athymic nude mice and observed tumor formation. ZnCl2 was administered to determine the role of zinc ions. Results Chronic low-dose exposure to nZnO significantly intensified the malignant progression of HCC cells, whereas aged nZnO may exacerbate the severity of malignant progression. Furthermore, through transcriptome sequencing analysis and in vitro cellular rescue experiments, we demonstrated that the mechanism of nZnO-induced malignant progression of HCC could be linked to the activation of Claudin-2 (CLDN2), one of the components of cellular tight junctions, and the dysregulation of its downstream signaling pathways. Conclusion Long-term exposure of fresh and aged nZnO promotes hepatocellular carcinoma malignancy by up-regulating CLDN2. The implications of this work can be profound for cancer patients, as the use of various nanoproducts and unintentional exposure to environmentally transformed NMs may unknowingly hasten the progression of their cancers.
Collapse
Affiliation(s)
- Na Yu
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Mingqin Su
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Juan Wang
- Department of Public Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Yakun Liu
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Jingya Yang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Jingyi Zhang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Meimei Wang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, People’s Republic of China
| |
Collapse
|
2
|
Julaiti M, Guo H, Cui T, Nijiati N, Huang P, Hu B. Application of stem cells in the study of developmental and functional toxicity of endodermal-derived organs caused by nanoparticles. Toxicol In Vitro 2024; 98:105836. [PMID: 38702034 DOI: 10.1016/j.tiv.2024.105836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Nanoparticles have unique properties that make them useful in biomedicine. However, their extensive use raises concerns about potential hazards to the body. Therefore, it is crucial to establish effective and robust toxicology models to evaluate the developmental and functional toxicity of nanoparticles on the body. This article discusses the use of stem cells to study the developmental and functional toxicity of organs of endodermal origin due to nanoparticles. The study discovered that various types of nanoparticles have varying effects on stem cells. The application of stem cell models can provide a possibility for studying the effects of nanoparticles on organ development and function, as they can more accurately reflect the toxic mechanisms of different types of nanoparticles. However, stem cell toxicology systems currently cannot fully reflect the effects of nanoparticles on entire organs. Therefore, the establishment of organoid models and other advanced assessment models is expected to address this issue.
Collapse
Affiliation(s)
- Mulati Julaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Haoqiang Guo
- Human anatomy, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Tingting Cui
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Nadire Nijiati
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Pengfei Huang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Bowen Hu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
3
|
Wang J, Jiang M, Wan G, Fu Y, Ye Y, Wu H, Chen Y, Chen Y, Sun Y, Wang X, Zhou E, Yang Z. Exposure to ZnO nanoparticles induced blood-milk barrier dysfunction by disrupting tight junctions and cell injury. Toxicol Lett 2023; 384:63-72. [PMID: 37437672 DOI: 10.1016/j.toxlet.2023.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) are one of the most widely used nanomaterials with excellent chemical and biological properties. However, their widespread application has led to increased risk to the natural environment and public health. A growing number of studies have shown that ZnO-NPs deposited in target organs interact with internal barriers to trigger injurious responses. The underlying mechanism of ZnO-NPs on the blood-milk barrier dysfunction remains to be understood. Our results revealed that excessive accumulation of ZnO-NPs induced histopathological injuries in the mammary gland, leading to the distribution of ZnO-NPs in the milk of lactating mice. A prominent diffusion of blood-milk barrier permeability marker, albumin-fluorescein isothiocyanate conjugate (FITC-albumin) was observed at cell-cell junction after ZnO-NPs exposure. Meanwhile, ZnO-NPs weakened the blood-milk barrier function by altering the expression of tight junction proteins. The excessive accumulation of ZnO-NPs also induced inflammatory response by activating the NF-κB and MAPK signaling pathways, leading to the dysfunctional blood-milk barrier. Furthermore, we found that ZnO-NPs led to increased iron accumulation and lipid oxidation, thus increasing oxidative injury and ferroptosis in mammary glands. These results indicated that ZnO-NPs weaken the integrity of the blood-milk barrier by directly affecting tight junctions and cellular injury in different ways.
Collapse
Affiliation(s)
- Jingjing Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| | - Mingzhen Jiang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| | - Guangchao Wan
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| | - Yiwu Fu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| | - Yingrong Ye
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| | - Hanpeng Wu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| | - Yichun Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| | - Yao Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| | - Youpeng Sun
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| | - Xia Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| | - Ershun Zhou
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China.
| | - Zhengtao Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China.
| |
Collapse
|
4
|
Abouzeinab NS, Kahil N, Fakhruddin N, Awad R, Khalil MI. Intraperitoneal hepato-renal toxicity of zinc oxide and nickel oxide nanoparticles in male rats: biochemical, hematological and histopathological studies. EXCLI JOURNAL 2023; 22:619-644. [PMID: 37662710 PMCID: PMC10471841 DOI: 10.17179/excli2023-6237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 09/05/2023]
Abstract
In recent years, zinc oxide (ZnO) and nickel oxide (NiO) nanoparticles (NPs) have become more prevalent in commercial and industrial products. However, questions have been raised regarding their potential harm to human health. Limited studies have been conducted on their intraperitoneal toxicity in rats, and their co-exposure effects remain uncertain. Therefore, this study aimed to investigate some biological responses induced by a single intraperitoneal injection of ZnO-NPs (200 mg/kg) and/or NiO-NPs (50 mg/kg) in rats over time intervals. Blood and organ samples were collected from 36 male rats for hematological, biochemical, oxidative stress, and histological analysis. Results showed that the administration of NPs reduced the body and organ weights as well as red blood cell (RBC) indices and altered white blood cell (WBC) and platelet (PLT) counts. The experimental groups exhibited elevated levels of aspartate aminotransferase (AST), alanine transaminase (ALT), creatinine (CREA), urea, lipid profile, glucose (GLU), total protein (TP), albumin (ALB) and malondialdehyde (MDA), and decreased uric acid (UA), superoxide dismutase (SOD), and glutathione (GSH). Histological observations also revealed architectural damages in liver and kidneys. These alterations were time-dependent and varied in their degree of toxicity. Co-exposure of NPs initially lessened the damage but increased it afterwards compared to individual exposure. In conclusion, intraperitoneal injection of ZnO-NPs and/or NiO-NPs alters biological processes and induces oxidative stress in rats' liver and kidneys in a time-dependent manner, with NiO-NPs being more potent than ZnO-NPs. Furthermore, co-exposed NPs initially appeared to be antagonistic to one another while further aiming toward synergism.
Collapse
Affiliation(s)
- Noura S. Abouzeinab
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Nour Kahil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Najla Fakhruddin
- Department of Pathology and Laboratory Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ramadan Awad
- Department of Physics, Faculty of Science, Beirut Arab University, Beirut, Lebanon
- Department of Physics, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mahmoud I. Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Xie J, Li H, Zhang T, Song B, Wang X, Gu Z. Recent Advances in ZnO Nanomaterial-Mediated Biological Applications and Action Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091500. [PMID: 37177043 PMCID: PMC10180283 DOI: 10.3390/nano13091500] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
In recent years, with the deepening research, metal zinc oxide (ZnO) nanomaterials have become a popular research object in the biological field, particularly in biomedicine and food safety, which is attributed to their unique physicochemical properties such as high surface area and volume ratio, luminescence effect, surface characteristics and biological activities. Herein, this review provides a detailed overview of the ZnO nanomaterial-mediated biological applications that involve anti-bacterial, anti-tumor, anti-inflammation, skin care, biological imaging and food packaging applications. Importantly, the corresponding action mechanisms of ZnO nanomaterials are pointed. Additionally, the structure and structure-dependent physicochemical properties, the common synthesis methods and the biosafety of ZnO nanoparticles are revealed in brief. Finally, the significance and future challenges of ZnO nanomaterial applications are concluded.
Collapse
Affiliation(s)
- Jiani Xie
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Huilun Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Clinical Medical College, Chengdu University, Chengdu 610106, China
| | - Tairan Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Bokai Song
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xinhui Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Duan L, Yan F, Zhang L, Liu B, Zhang Y, Tian X, Liu Z, Wang X, Wang S, Tian J, Bao H, Liu T. ZnO@Polyvinyl Alcohol/Poly(lactic acid) Nanocomposite Films for the Extended Shelf Life of Pork by Efficient Antibacterial Adhesion. ACS OMEGA 2022; 7:44657-44669. [PMID: 36530329 PMCID: PMC9753524 DOI: 10.1021/acsomega.2c03016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
The proliferation of microorganisms is an important reason for meat spoilage and deterioration. Freezing and packaging by polymer films and preservatives are commonly used to preserve meat. While the energy consumption of freezing is very big, the polymer films made by petroleum bring up heavy environmental pressure. In the present study, biodegradable antibacterial ZnO@PLA (ZP) and ZnO@PVA/PLA (ZPP) nanocomposite films used as food packaging have been synthesized by the solvent evaporation method and coating method, respectively. Compared with films without ZnO NPs, ZP and ZPP both had long-term bacteriostasis for 24 and 120 h at temperatures of 25 and 4 °C, respectively. Moreover, the antibacterial effect showed positive relevance with the increase of the ZnO NP concentration. In addition, the antibacterial effect of ZPP was better than that of ZP in the same condition. Scanning electron microscopy showed that the numbers of methicillin-resistant staphylococcus aureus (MRSA) on ZP and ZPP were significantly reduced compared to that in the blank film, and ZPP caused the morphology of MRSA to change, which means that the antibacterial mechanism of ZP and ZPP composite films might be related to antibacterial adhesion. In conclusion, ZPP films have great potential to be regarded as the candidate of food packing to extend the shelf life of pork.
Collapse
Affiliation(s)
- Luoyan Duan
- Laboratory
of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, People’s Republic of China
- NHC
Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit, China National
Center for Food Safety Risk Assessment, No.37, Guangqu Road, Chaoyang
District, Beijing 100022, People’s Republic of China
| | - Feiyi Yan
- Laboratory
of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, People’s Republic of China
| | - Lei Zhang
- NHC
Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit, China National
Center for Food Safety Risk Assessment, No.37, Guangqu Road, Chaoyang
District, Beijing 100022, People’s Republic of China
| | - Bo Liu
- Laboratory
of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, People’s Republic of China
| | - Yichi Zhang
- Laboratory
of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, People’s Republic of China
| | - Xinyuan Tian
- Laboratory
of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, People’s Republic of China
| | - Zhaoping Liu
- NHC
Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit, China National
Center for Food Safety Risk Assessment, No.37, Guangqu Road, Chaoyang
District, Beijing 100022, People’s Republic of China
| | - Xiaodan Wang
- NHC
Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit, China National
Center for Food Safety Risk Assessment, No.37, Guangqu Road, Chaoyang
District, Beijing 100022, People’s Republic of China
| | - Shuaiyu Wang
- NHC
Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit, China National
Center for Food Safety Risk Assessment, No.37, Guangqu Road, Chaoyang
District, Beijing 100022, People’s Republic of China
| | - Jijing Tian
- NHC
Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit, China National
Center for Food Safety Risk Assessment, No.37, Guangqu Road, Chaoyang
District, Beijing 100022, People’s Republic of China
| | - Huihui Bao
- NHC
Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit, China National
Center for Food Safety Risk Assessment, No.37, Guangqu Road, Chaoyang
District, Beijing 100022, People’s Republic of China
| | - Tianlong Liu
- Laboratory
of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, People’s Republic of China
| |
Collapse
|
7
|
Li J, Chen C, Xia T. Understanding Nanomaterial-Liver Interactions to Facilitate the Development of Safer Nanoapplications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106456. [PMID: 35029313 PMCID: PMC9040585 DOI: 10.1002/adma.202106456] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Nanomaterials (NMs) are widely used in commercial and medical products, such as cosmetics, vaccines, and drug carriers. Exposure to NMs via various routes such as dermal, inhalation, and ingestion has been shown to gain access to the systemic circulation, resulting in the accumulation of NMs in the liver. The unique organ structures and blood flow features facilitate the liver sequestration of NMs, which may cause adverse effects in the liver. Currently, most in vivo studies are focused on NMs accumulation at the organ level and evaluation of the gross changes in liver structure and functions, however, cell-type-specific uptake and responses, as well as the molecular mechanisms at cellular levels leading to effects at organ levels are lagging. Herein, the authors systematically review diverse interactions of NMs with the liver, specifically on major liver cell types including Kupffer cells (KCs), liver sinusoidal endothelial cells (LSECs), hepatic stellate cells (HSCs), and hepatocytes as well as the detailed molecular mechanisms involved. In addition, the knowledge gained on nano-liver interactions that can facilitate the development of safer nanoproducts and nanomedicine is also reviewed.
Collapse
Affiliation(s)
- Jiulong Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
8
|
Mittag A, Owesny P, Hoera C, Kämpfe A, Glei M. Effects of Zinc Oxide Nanoparticles on Model Systems of the Intestinal Barrier. TOXICS 2022; 10:49. [PMID: 35202236 PMCID: PMC8880068 DOI: 10.3390/toxics10020049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Zinc oxide nanoparticles (ZnO NP) are often used in the food sector, among others, because of their advantageous properties. As part of the human food chain, they are inevitably taken up orally. The debate on the toxicity of orally ingested ZnO NP continues due to incomplete data. Therefore, the aim of our study was to examine the effects of two differently sized ZnO NP (<50 nm and <100 nm primary particle size; 123-614 µmol/L) on two model systems of the intestinal barrier. Differentiated Caco-2 enterocytes were grown on Transwell inserts in monoculture and also in coculture with the mucus-producing goblet cell line HT29-MTX. Although no comprehensive mucus layer was detectable in the coculture, cellular zinc uptake was clearly lower after a 24-h treatment with ZnO NP than in monocultured cells. ZnO NP showed no influence on the permeability, metabolic activity, cytoskeleton and cell nuclei. The transepithelial electrical resistance was significantly increased in the coculture model after treatment with ≥307 µmol/L ZnO NP. Only small zinc amounts (0.07-0.65 µg/mL) reached the basolateral area. Our results reveal that the cells of an intact intestinal barrier interact with ZnO NP but do not suffer serious damage.
Collapse
Affiliation(s)
- Anna Mittag
- Department of Applied Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Straße 24, 07743 Jena, Germany; (P.O.); (M.G.)
| | - Patricia Owesny
- Department of Applied Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Straße 24, 07743 Jena, Germany; (P.O.); (M.G.)
| | - Christian Hoera
- Swimming and Bathing Pool Water, Chemical Analytics, German Environment Agency, Heinrich-Heine-Straße 12, 08645 Bad Elster, Germany; (C.H.); (A.K.)
| | - Alexander Kämpfe
- Swimming and Bathing Pool Water, Chemical Analytics, German Environment Agency, Heinrich-Heine-Straße 12, 08645 Bad Elster, Germany; (C.H.); (A.K.)
| | - Michael Glei
- Department of Applied Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Straße 24, 07743 Jena, Germany; (P.O.); (M.G.)
| |
Collapse
|
9
|
Tsymbalyuk O, Davydovska T, Lisnyak V, Veselsky S, Zaderko A, Voiteshenko I, Naumenko A, Skryshevsky V. ZnO and TiO 2 Nanocolloids: State of Mechanisms that Regulating the Motility of the Gastrointestinal Tract and the Hepatobiliary System. ACS OMEGA 2021; 6:23960-23976. [PMID: 34568675 PMCID: PMC8459414 DOI: 10.1021/acsomega.1c02981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Using the transmission electron microscopy (TEM)/high-resolution TEM (HRTEM) and selected area electron diffraction (SAED) methods, it was shown that the nanocolloids of ZnO contain hydrolyzed ZnO nanoparticles (NPs). Typically, the nanocrystalline ZnO/Zn(OH)2 core is covered by an amorphous shell of zinc hydroxides, preventing the encapsulated crystal core from dissolving. Similar studies were carried out with TiO2 nanocolloids. It was found that burdening of rats for 30 days with a ZnO aqueous nanocolloid (AN) was accompanied by a narrowing of the amplitude range, a decrease (increase) in the frequency of spontaneous contractions (SCs), and an inhibition of the efficiency indices for smooth muscles (SMs) of the antrum and cecum. Under longer (100 days) burdening of rats with AN of ZnO, there was a tendency toward restoring the above parameters. In terms of the value and the direction of changes in most parameters for SCs of SMs, the effects (30 days) of TiO2 AN differed from those for ZnO AN and were almost the same in the case of their long-term impact. It was found that mostly M2-cholinoreceptor-dependent mechanisms of regulating the intracellular concentration of Ca2+ were sensitive to the effect of ZnO and TiO2 ANs. The molecular docking demonstrated that ZnO and TiO2 NPs did not compete with acetylcholine for the site of binding to M3 and M2 cholinoreceptors but may impact the affinity of orthosteric ligands to M2 cholinoreceptors. The studies showed that burdening rats with ZnO and TiO2 ANs was also accompanied by changes in the activity state of both intracellular enzymes and the ion transport systems for Na+, K+, and Ca2+, related to the processes of bile secretion, via the plasma membrane of hepatocytes.
Collapse
Affiliation(s)
- Olga Tsymbalyuk
- Institute
of High Technologies, Taras Shevchenko National
University of Kyiv, 64, Volodymyrska Str, 01033 Kyiv, Ukraine
| | - Tamara Davydovska
- Institute
of High Technologies, Taras Shevchenko National
University of Kyiv, 64, Volodymyrska Str, 01033 Kyiv, Ukraine
| | - Vladyslav Lisnyak
- Chemical
Faculty, Taras Shevchenko National University
of Kyiv, 64, Volodymyrska
Str., 01033 Kyiv, Ukraine
- Prešov
University in Prešov, Ul. 17. Novembra č. 1, 081 16 Prešov, Slovakia
| | - Stanislav Veselsky
- Institute
of High Technologies, Taras Shevchenko National
University of Kyiv, 64, Volodymyrska Str, 01033 Kyiv, Ukraine
| | - Alexander Zaderko
- Institute
of High Technologies, Taras Shevchenko National
University of Kyiv, 64, Volodymyrska Str, 01033 Kyiv, Ukraine
- Corporation
Science Park Taras Shevchenko University of Kyiv, 60, Volodymyrska Str., 01033 Kyiv, Ukraine
| | - Ivan Voiteshenko
- Institute
of High Technologies, Taras Shevchenko National
University of Kyiv, 64, Volodymyrska Str, 01033 Kyiv, Ukraine
| | - Anna Naumenko
- Institute
of High Technologies, Taras Shevchenko National
University of Kyiv, 64, Volodymyrska Str, 01033 Kyiv, Ukraine
| | - Valeriy Skryshevsky
- Institute
of High Technologies, Taras Shevchenko National
University of Kyiv, 64, Volodymyrska Str, 01033 Kyiv, Ukraine
- Corporation
Science Park Taras Shevchenko University of Kyiv, 60, Volodymyrska Str., 01033 Kyiv, Ukraine
| |
Collapse
|
10
|
Zhang H, Chen F, Li Y, Shan X, Yin L, Hao X, Zhong Y. The effects of autophagy in rat tracheal epithelial cells induced by silver nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27565-27576. [PMID: 33515144 DOI: 10.1007/s11356-020-12259-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
The massive use of silver nanoparticles (AgNPs) is potentially harmful to exposed humans. Although previous studies have found that AgNPs can induce cell autophagy, few studies have focused on the toxic pathways and mechanisms of autophagy induced by AgNPs in rat respiratory epithelial (RTE) cells. In this study, RTE cells were exposed to two kinds of AgNPs in vitro to ascertain the influence of mTOR-autophagy pathway-associated protein expression, including Beclin1, LC3B, Atg5, and Atg7. After exposure to different sizes and concentrations of AgNPs for 12 h, the uptake of silver in RTE cells reached 0.45 μg/L to 1.11 μg/L, indicating that AgNPs can enter RTE cells, leading to toxic effects. Our study found that this toxic effect was related to autophagy caused by ROS accumulation that was mediated by the mTOR pathway. With increasing AgNP exposure concentrations, the expression of p-mTOR was significantly downregulated, and expression of the autophagy-related proteins Beclin1, LC3B, Atg5, and Atg7 was significantly increased in RTE cells in all exposed groups. At a concentration of 1000 μg/L, the expression of LC3BII/LC3BI in all exposed groups was 24.49 times and 12.71 times that of the control, and the expression of Atg7 in all exposed groups was 23.21 times and 13.21 times that of the control. The upregulation of autophagy-related proteins in the AgNP-10 nm exposure groups was greater than that of the AgNP-100 nm exposure group. In summary, the mTOR pathway mediates AgNP-induced autophagy in RTE cells, which leads to damage to the respiratory system barrier and human health risks. This study can facilitate the development of prevention and intervention policies against adverse consequences induced by AgNPs.
Collapse
Affiliation(s)
- Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318#, Hangzhou, 311121, Zhejiang Province, China
| | - Feifei Chen
- School of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318#, Hangzhou, 311121, Zhejiang Province, China
| | - Yan Li
- School of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318#, Hangzhou, 311121, Zhejiang Province, China
| | - Xiaodong Shan
- School of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318#, Hangzhou, 311121, Zhejiang Province, China
| | - Lu Yin
- School of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318#, Hangzhou, 311121, Zhejiang Province, China
| | - Xiaojing Hao
- School of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318#, Hangzhou, 311121, Zhejiang Province, China
| | - Yuchi Zhong
- School of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318#, Hangzhou, 311121, Zhejiang Province, China.
| |
Collapse
|
11
|
Buhr CR, Eckrich J, Kluenker M, Bruns K, Wiesmann N, Tremel W, Brieger J. Determination of the LD 50 with the chick embryo chorioallantoic membrane (CAM) assay as a promising alternative in nanotoxicological evaluation. Nanotoxicology 2021; 15:690-705. [PMID: 33979554 DOI: 10.1080/17435390.2021.1916635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Toxicity tests in rodents are still considered a controversial topic concerning their ethical justifiability. The chick embryo chorioallantoic membrane (CAM) assay may offer a simple and inexpensive alternative. The CAM assay is easy to perform and has low bureaucratic hurdles. At the same time, the CAM assay allows the application of a broad variety of analytical methods in the field of nanotoxicological research. We evaluated the CAM assay as a methodology for the determination of nanotoxicity. Therefore we calculated the median lethal dose (LD50), performed in vivo microscopy and immunohistochemistry to identify organ-specific accumulation profiles, potential organ damage, and the kinetics of the in vivo circulation of the nanoparticles. Zinc oxide nanoparticles were intravascularly injected on day 10 of the egg development and showed an LD50 of 17.5 µM (1.4 µg/mLeggcontent). In comparison, the LD50 of equivalent amounts of Zn2+ was 4.6 µM (0.6 µg/mLeggcontent). Silica encapsulated ZnO@SiO2 nanoparticles conjugated with fluorescein circulated in the bloodstream for at least 24 h. Particles accumulated mostly in the liver and kidney. In immunohistochemical staining, organ damage was detected only in liver tissue after intravascular injection of zinc oxide nanoparticles in very high concentrations. Zinc oxide nanoparticles showed a different pharmacokinetic profile compared to Zn2+ ions. In conclusion, the CAM assay has proven to be a promising methodology for evaluating nanotoxicity and for the assessment of the in vivo accumulation profiles of nanoparticles. These findings may qualify the methodology for risk assessment of innovative nanotherapeutics in the future.
Collapse
Affiliation(s)
- Christoph Raphael Buhr
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Martin Kluenker
- Department of Chemistry, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Kai Bruns
- Department of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Nadine Wiesmann
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.,Department of Oral and Maxillofacial Surgery, Plastic Surgery, University Medical Center Mainz, Mainz, Germany
| | - Wolfgang Tremel
- Department of Chemistry, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jürgen Brieger
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
12
|
Liu L, Kong L. Research progress on the carcinogenicity of metal nanomaterials. J Appl Toxicol 2021; 41:1334-1344. [PMID: 33527484 DOI: 10.1002/jat.4145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 12/21/2022]
Abstract
With the rapid development of nanotechnology, new nanomaterials with enormous potentials continue to emerge, especially metal nanomaterials. Metal nanomaterials possess the characteristics of metals and nanomaterials, so they are widely used in many fields. But at the same time, whether the use or release of metal nan4omaterials into the environment is toxic to human beings and animals has now attained widespread attention at home and abroad. Currently, it is an indisputable fact that cancer ranks among the top causes of death among residents worldwide. The properties of causing DNA damage and mutations possessed by these metal nanomaterials make them unpredictable influences in the body, subsequently leading to genotoxicity and carcinogenicity. Due to the increasing evidence of their roles in carcinogenicity, this article reviews the toxicological and carcinogenic effects of metal nanomaterials, including nano-metal elements (nickel nanoparticles, silver nanoparticles, and cobalt nanoparticles) and nano-metal oxides (titanium dioxide nanoparticles, silica nanoparticles, zinc oxide nanoparticles, and alumina nanoparticles). This article provides a reference for the researchers and policymakers to use metal nanomaterials rationally in modern industries and biomedicine.
Collapse
Affiliation(s)
- Lin Liu
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Lu Kong
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
13
|
Zhang H, Chen F, Li Y, Shan X, Yin L, Hao X, Zhong Y. More serious autophagy can be induced by ZnO nanoparticles than single-walled carbon nanotubes in rat tracheal epithelial cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:238-248. [PMID: 32951350 DOI: 10.1002/tox.23029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/24/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Metal oxide nanoparticles and carbon nanoparticles, as common nanoparticles (NPs), can cause autophagy in certain cells, which will lead to biohealth risk issues. This study determined the difference in autophagy induced by zinc oxide nanoparticles (ZnO NPs) and single-walled carbon nanotubes (SWCNTs) in respiratory epithelial cells. ICP-OES results showed that NPs uptake as well as the intercellular contents of particles affected cytotoxicity in a dose-dependent manner. ZnO NPs-30 nm had a distinct green dot structure representing autophagy, the SWCNTs exposure group had a few green light spots at a concentration of 10 μg/L. The ROS content of the ZnO NP-30 nm exposure group had the greatest increase at a concentration of 1000 μg/L, which was 2.5 times higher than that of the control, the SWCNTs exposure group showed a 2.2-fold increase. A slight downregulation of p-mTOR was detected, and the ZnO NPs-30 nm treatment group had the significant downregulation rate. The gene and protein expression levels of Beclin-1 and LC3B were upregulated as the exposure concentration increased. The protein expression of Beclin-1 and LC3B in the 1000 μg/L ZnO NPs-30 nm exposure group were 5.21 times and 4.12 times that of the control, respectively. The mRNA expression of Beclin-1 and LC3B in the 1000 μg/L ZnO NPs-30 nm exposure group were 5.04 times and 3.61 times that of the control, respectively. At any concentration, the effect of ZnO NPs-30 nm was greater than that of the SWCNTs. Interaction and crosstalk analysis showed that exposure to ZnO NPs-30 nm caused autophagy through the aggregation of undegraded autophagosomes, whereas SWCNTs exposure induced diminished intercellular oxidative stress to inhibit autophagy. Therefore, this study demonstrated that the effects of autophagy induced by ZnO NPs-30 nm and SWCNTs were different. The health risks of ZnO-30 nm NPs are higher than those of SWCNTs.
Collapse
Affiliation(s)
- Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Feifei Chen
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Yan Li
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Xiaodong Shan
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Lu Yin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Xiaojing Hao
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Yuchi Zhong
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
14
|
Boey A, Ho HK. All Roads Lead to the Liver: Metal Nanoparticles and Their Implications for Liver Health. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000153. [PMID: 32163668 DOI: 10.1002/smll.202000153] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 05/20/2023]
Abstract
Metal nanoparticles (NPs) are frequently encountered in daily life, and concerns have been raised about their toxicity and safety. Among which, they naturally accumulate in the liver after introduction into the body, independent of the route of administration. Some NPs exhibit intrinsic pharmaceutical effects that are related to their physical parameters, and their inadvertent accumulation in the liver can exert strong effects on liver function and structure. Even as such physiological consequences are often categorically dismissed as toxic and deleterious, there are cell type-specific and NP-specific biological responses that elicit distinctive pharmacological consequences that can be harnessed for good. By limiting the scope of discussion to metallic NPs, this work attempts to provide a balanced perspective on their safety in the liver, and discusses both possible therapeutic benefits and potential accidental liver damage arising from their interaction with specific parenchymal and nonparenchymal cell types in the liver.
Collapse
Affiliation(s)
- Adrian Boey
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Han Kiat Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| |
Collapse
|
15
|
Kong T, Zhang SH, Zhang C, Zhang JL, Yang F, Wang GY, Yang ZJ, Bai DY, Shi YY, Liu TQ, Li HL. The Effects of 50 nm Unmodified Nano-ZnO on Lipid Metabolism and Semen Quality in Male Mice. Biol Trace Elem Res 2020; 194:432-442. [PMID: 31264129 DOI: 10.1007/s12011-019-01792-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/19/2019] [Indexed: 11/30/2022]
Abstract
Fifty male mice were exposed to 50 nm unmodified nano-ZnO through intragastric administration for 90 days to detect the long-term effects of unmodified nano-ZnO in mice. Results showed that the blood glucose, serum follicle stimulating hormone, luteinizing hormone, testosterone, and estradiol were significantly decreased (p < 0.05). The serum triglyceride, total cholesterol, and low-density lipoprotein were significantly increased (p < 0.05). The semen quality of the 160 mg/kg·bw group were significantly lowered (p < 0.05). The liver and testis catalase and CuZn-SOD activities were significantly elevated (p < 0.05). The abilities of •OH inhibition in the livers and testes of the 160 mg/kg·bw group were significantly lowered (p < 0.05). The liver and testis MDA levels of the 160 mg/kg·bw group were significantly elevated (p < 0.05). Results indicate that exposure of nano-ZnO could induce lipid metabolism disorder, hyperlipidemia, and reproductive toxicity to male mice through oxidative injury.
Collapse
Affiliation(s)
- Tao Kong
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, 471023, Henan, People's Republic of China.
- Environmental and Animal Products Safety Laboratory of Key Discipline in University of Henan Province, No. 263 Kaiyuan Road, Luoyang, 471023, Henan, People's Republic of China.
| | - Shu-Hui Zhang
- Library of Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, 471023, Henan, People's Republic of China
| | - Cai Zhang
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, 471023, Henan, People's Republic of China
- Environmental and Animal Products Safety Laboratory of Key Discipline in University of Henan Province, No. 263 Kaiyuan Road, Luoyang, 471023, Henan, People's Republic of China
| | - Ji-Liang Zhang
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, 471023, Henan, People's Republic of China
- Environmental and Animal Products Safety Laboratory of Key Discipline in University of Henan Province, No. 263 Kaiyuan Road, Luoyang, 471023, Henan, People's Republic of China
| | - Fan Yang
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, 471023, Henan, People's Republic of China
- Environmental and Animal Products Safety Laboratory of Key Discipline in University of Henan Province, No. 263 Kaiyuan Road, Luoyang, 471023, Henan, People's Republic of China
| | - Guo-Yong Wang
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, 471023, Henan, People's Republic of China
| | - Zi-Jun Yang
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, 471023, Henan, People's Republic of China
- Environmental and Animal Products Safety Laboratory of Key Discipline in University of Henan Province, No. 263 Kaiyuan Road, Luoyang, 471023, Henan, People's Republic of China
| | - Dong-Ying Bai
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, 471023, Henan, People's Republic of China
| | - Yun-Yun Shi
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, 471023, Henan, People's Republic of China
| | - Tian-Qi Liu
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, 471023, Henan, People's Republic of China
| | - Hai-Long Li
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, 471023, Henan, People's Republic of China
| |
Collapse
|