1
|
Datt C, Thamizhan P, Chauhan P, Dudi K, Mani V. Effects of nickel supplementation on nutrient utilization, mineral balance, haematology and antioxidant status of crossbred dairy calves. J Trace Elem Med Biol 2023; 79:127250. [PMID: 37422963 DOI: 10.1016/j.jtemb.2023.127250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/04/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Nickel has been identified as an important newer trace mineral playing essential role in animals however, its precise mechanism of action in the body is yet to be determined. Interaction of Ni with other essential minerals is suggested in reports limited to lab animals and needs to be explored further in large animals. AIM This study was conducted to study the influence of Ni supplementation at different levels, on minerals and health status of crossbred dairy calves. METHOD Twenty-four Karan Fries crossbred (Tharparkar × Holstein Friesian) male dairy calves were selected based on body weight (137.09 ± 5.68) and age (10.78 ± 0.61) and were divided into 4 treatment groups (n = 6) given basal diet supplemented with 0 (Ni0), 5 (Ni5), 7.5 (Ni7.5) and 10 (Ni10) ppm Ni/kg of DM. Nickel was supplemented in the form of nickel sulphate hexahydrate (NiSO4.6 H2O) solution. To ensure the intake of the required amount of nickel by each animal, the calculated quantity of solution was mixed with 250 g concentrate mixture and offered individually to the calves. The calves were fed total mixed ration (TMR) consisting of green fodder, wheat straw and concentrate mixture in the ratio of 40:20:40 and the nutritional requirements were met according to NRC (2001) guidelines. Growth performance was recorded at fortnightly interval whereas, plasma minerals, haematology, antioxidant and immunity parameters were studied at monthly interval during the 150-day experimental period. Nutrient utilization and mineral balances were estimated with the help of a metabolism trial conducted at the end of feeding trial. RESULTS Supplementation of Ni exhibited no influence on dry matter intake (DMI), body weight, average daily gain (ADG) and nutrient digestibility of dairy calves. However, the absorption and balance of minerals such as Ni, Fe, Cu, Zn and their respective plasma concentration increased (P < 0.05) with Ni supplementation and highest values were observed in calves fed 10 mg Ni/kg DM. The red blood cell (RBC) count, haemoglobin (Hb) concentration, haematocrit (HCT) and activity of superoxide dismutase (SOD) and catalase antioxidant enzymes showed highest increase (P < 0.05) in calves supplemented with Ni at level of 10 mg/kg DM as compared to other treatment groups. However, white blood cell (WBC) count, glutathione peroxidase (GPx), total antioxidant status (TAS), total immunoglobulins and IgG plasma concentration remained unaltered with addition of different levels of Ni in the diet of calves. CONCLUSIONS The supplementation of Ni at level of 10 mg/kg DM shows a positive effect on status of trace minerals such as Fe, Cu, Zn and improves the physiological conditions and health status of crossbred dairy calves indicated by improved haematology and antioxidant parameters.
Collapse
Affiliation(s)
- Chander Datt
- Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - P Thamizhan
- Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Prince Chauhan
- Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Kuldeep Dudi
- Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Veena Mani
- Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana 132001, India
| |
Collapse
|
2
|
Physiological Characteristics of Putative Enterobacteria Associated with Meat and Fish Available in Southern Brazilian Retail Markets: Antimicrobial Susceptibility, Toxic Metal Tolerance and Expression of Efflux Pumps. Antibiotics (Basel) 2022; 11:antibiotics11121677. [PMID: 36551334 PMCID: PMC9774923 DOI: 10.3390/antibiotics11121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Multidrug-resistant (MDR) mesophilic facultatively anaerobic Gram-negative rods are a public health issue and their spread from animal-source foods to humans is of concern worldwide. Hence, the aim of this study was to examine the antibiotic susceptibility patterns and physiological aspects of such rods, including their tolerance to toxic metals and the screening of efflux pumps expressing isolates among enterobacteria isolated from meat (chicken, beef and pork) and fish samples acquired from retail establishments in a Brazilian urban Centre of over 2,300,000 inhabitants. The study revealed that 62.9% of isolated bacteria were resistant to at least one antimicrobial, of which 32.3% and 8.1% were resistant to one and two of the tested drugs, respectively. A resistance of up to six antimicrobials was also observed (0.9%). Out of the total amount, 22.7% were classified as MDR. Chicken was the meat that harbored most MDR isolates, and fish harbored the least. It was not possible to distinguish the different types of meat or fish considering the resistance patterns. The MDR isolates showed a higher tolerance to mercury and cadmium salts and the increased activity of the efflux mechanisms compared to other susceptible or resistant strains. In One Health. the perspective occurrence of putative MDR bacteria in fresh meat and fish draws attention to the antimicrobial resistance phenomenon in an open environment.
Collapse
|
3
|
KUMAR MUNEENDRA, SINGH ANUJ, KUMAR VINOD, KUSHWAHA RAJU, VASWANI SHALINI, KUMAR AVINASH, SHUKLA PANKAJKUMAR, SINGH YAJUVENDRA. Assessing essentiality of nickel in growing Hariana heifers by determining its effect on performance, nitrogen and mineral metabolism, urease activity, and endocrine biomarkers. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2022. [DOI: 10.56093/ijans.v92i11.125138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this study was to determine the effect of nickel (Ni) on growth performance, nutrient utilization, urease activity, and endocrine variables in growing cattle. Growing Hariana heifers (18) were randomly assigned into three groups (n=6), i.e. groups either without Ni supplementation (Ni0.0; control) or supplemented with 1.5 mg of Ni/kg DM (Ni1.5), and 3.0 mg of Ni/kg DM (Ni3.0). The experiment lasted for 90 days. Heifers supplemented with Ni showed higher nutrient intake and average daily gain (ADG) than control group. The nutrient digestibility was not affected by treatment, while the Ni supplemented animals showed higher intake, excretion, and nitrogen balance. The urease activity was comparable and higher in the Ni1.5 and Ni3.0 groups than in the control group. There was no effect of treatment on the metabolism of calcium (Ca), phosphorus (P), zinc (Zn), copper (Cu), and chromium (Cr). However, iron (Fe) retention showed a negative association with Ni levels. Plasma cortisol concentration was lower while the insulin like growth factor-1 (IGF-1) and tetraiodothyronine (T4) were higher in the Ni3.0 group compared to the Ni0.0 group, with Ni1.5 being intermediate. The plasma concentrations of triiodothyronine (T3) and thyroid stimulating hormone (TSH) were not affected by dietary treatment. Plasma Ni concentration showed a dose dependent increase whereas, plasma levels of other minerals were not affected by treatment. In conclusion, dietary Ni supplementation in growing Hariana heifers improves performance and nutrient utilization by modulating urease activity and endocrine growth biomarkers.
Collapse
|
4
|
Nemiche S, Ait Hamadouche N, Nemmiche S, Fauconnier ML, Tou A. Ameliorative or corrective effects of Fig " Ficus carica" extract on nickel-induced hepatotoxicity in Wistar rats. Toxicol Res 2022; 38:311-321. [PMID: 35874505 PMCID: PMC9247128 DOI: 10.1007/s43188-021-00118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022] Open
Abstract
Many heavy metals and metalloids (e.g., Pb, Cd, and Ni) can contaminate the environment and cause severe health problems. Through this study, investigated the possible corrective effects of Ficus carica extract (FCE) against nickel (Ni) induced stress response and damage on the liver of rats. Male Wistar rats were divided into four groups (8 rats per group) and co-treated with FCE (350 mg/kg) and exposed to Nickel chloride (10 mg/kg) for 4 weeks. The volatile compounds of FCE were characterized by solid phase micro-extraction (SPME) coupled with GC-MS, and the biochemical parameters of stress were determined. The SPME-GC/MS analysis of FCE indicated the presence of thirty (30) phyto-bioactive compounds including alcohols, aldehydes, organic acids, ketones, furans, terpenes, ester and others. The best capacity for scavenging DPPH free radicals and metal chelating were found with the IC50 values of 0.49 and 2.91 mg/mL, respectively. Ni induced damage to various macromolecules. Malondialdehyde, protein carbonyls, alanine aminotransferase and gamma glutamyl transferarse levels were significantly increased in Ni exposed group compared to control group and co-treatment with FCE reduced the levels of these parameters. In conclusion, current findings showed that Ni-induced oxidative damage and the administration of FCE can improve correct and restore the alteration in the rat liver.
Collapse
Affiliation(s)
- Souhila Nemiche
- Laboratory of Experimental Bio-Toxicology, Bio-Depollution and Phyto-Remediation, Department of Biology, Faculty of Nature and Life Sciences, University of Oran 1 Ahmed Ben Bella, 31000 Oran, Algeria
| | - Nadia Ait Hamadouche
- Laboratory of Experimental Bio-Toxicology, Bio-Depollution and Phyto-Remediation, Department of Biology, Faculty of Nature and Life Sciences, University of Oran 1 Ahmed Ben Bella, 31000 Oran, Algeria
| | - Saïd Nemmiche
- Department of Biology, Faculty of Nature and Life Sciences, University of Mostaganem, 27000 Mostaganem, Algeria
| | - Marie-Laure Fauconnier
- Laboratory of General and Organic Chemistry, University of Liege, Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Abdenacer Tou
- Service of Pathology, University Hospital of Sidi Bel Abbes, Sidi Bel Abbes, Algeria
| |
Collapse
|
5
|
Lu Z, Xu Z, Kong L, Shen H, Aschenbach JR. Functional Changes of the Community of Microbes With Ni-Dependent Enzyme Genes Accompany Adaptation of the Ruminal Microbiome to Urea-Supplemented Diets. Front Microbiol 2020; 11:596681. [PMID: 33414773 PMCID: PMC7782429 DOI: 10.3389/fmicb.2020.596681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/27/2020] [Indexed: 11/25/2022] Open
Abstract
Urea is an inexpensive non-protein nitrogen source commonly supplemented to the diets of ruminants. It is cleaved to ammonia by bacterial ureases, which require Ni as a catalyst for ureolysis. The key event in the changes of the ruminal microbiome after urea supplementation remains unknown. We have therefore investigated changes in the ruminal microbiome and its community with Ni-dependent enzyme genes following urea supplementation and analyzed the associations of rumen environmental factors, including fermentation variables and Ni concentrations, with the compositional and functional changes of these communities. We found that urea supplementation increased urease activity and the concentrations of ammonia and Ni, and tended to increase concentrations of short chain fatty acids and acetate, whereas it decreased rumen pH and the L-/D-lactate ratio. With standards for genome completeness >60% and strain heterogeneity <10%, 20 bacterial species containing five Ni-dependent enzyme genes were detected in the metagenome sequences. For the five Ni-dependent enzyme genes, urea supplementation increased the relative abundances of genes of urease and acetyl-CoA synthase, whereas it decreased the relative abundances of genes of glyoxalase I, [NiFe]-hydrogenase, and lactate racemase. For the 20 microbes with Ni-dependent enzyme genes, urea supplementation increased the relative abundances of five bacteria exhibiting high capacities for the utilization of hemicellulose and pectin for butyrate and fatty acid biosynthesis. For the ruminal microbiome, urea supplementation increased the metagenomic capacities for hemicellulose and pectin degradation, butyrate generation, fatty acid biosynthesis, and carbon fixation, whereas it decreased the metagenomic capacities for starch degradation, propionate generation, and sulfur and nitrogen metabolism. Constrained correspondence analysis identified rumen ammonia and Ni concentrations as likely driving factors in the reshaping of the ruminal microbiome and, together with pH, of the community of microbes with Ni-dependent enzyme genes. Thus, the functional change of the latter community is probably an important event in the adaptation of the ruminal microbiome to urea-supplemented diets. This result provides a new perspective for the understanding of the effects of urea supplementation on rumen fermentation.
Collapse
Affiliation(s)
- Zhongyan Lu
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhihui Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.,Bioinformatics Center, Nanjing Agricultural University, Nanjing, China
| | - Lingmeng Kong
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hong Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.,Bioinformatics Center, Nanjing Agricultural University, Nanjing, China
| | - Jörg R Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Guo H, Liu H, Jian Z, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L, He R, Tang H. Immunotoxicity of nickel: Pathological and toxicological effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111006. [PMID: 32684520 DOI: 10.1016/j.ecoenv.2020.111006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Nickel (Ni) is a widely distributed metal in the environment and an important pollutant because of its many industrial applications. With increasing incidences of Ni contamination, Ni toxicity has become a global public health concern and recent evidence suggests that Ni adversely affects the immune system. Hence, this paper reviews the literature on immune-related effects of Ni exposure, the immunotoxicological effects of Ni, and the underlying mechanism of Ni immunotoxicity. The main focus was on the effect of Ni on the development of organs of immune system, lymphocyte subpopulations, cytokines, immunoglobulins, natural killer (NK) cells, and macrophages. Moreover, Ni toxicity also induces inflammation and several studies demonstrated that Ni could induce immunotoxicity. Excessive Ni exposure can inhibit the development of immune organs by excessively inducing apoptosis and inhibiting proliferation. Furthermore, Ni can decrease T and B lymphocytes, the specific mechanism of which requires further research. The effects of Ni on immunoglobulin A (IgA), IgG, and IgM remain unknown and while Ni inhibited IgA, IgG, and IgM levels in an animal experiment, the opposite result was found in research on humans. Ni inhibits the production of cytokines in non-inflammatory responses. Cytokine levels increased in Ni-induced inflammation responses, and Ni activates inflammation through toll like (TL)4-mediated nuclear factor-κB (NF-κB) and signal transduction cascades mitogen-activated protein kinase (MAPK) pathways. Ni has been indicated to inactivate NK cells and macrophages both in vitro and in vivo. Identifying the mechanisms underlying the Ni-induced immunotoxicity may help to explain the growing risk of infections and cancers in human populations that have been exposed to Ni for a long time. Such knowledge may also help to prevent and treat Ni-related carcinogenicity and toxicology.
Collapse
Affiliation(s)
- Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Huan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Agricultural Information Engineering of Sichuan Province, Sichuan Agriculture University, Yaan, Sichuan, 625014, China.
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Ran He
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| |
Collapse
|