1
|
Mo Y, Zhou L, Fu S, Yang H, Lin B, Zhang J, Lou Y, Li Y. Study on adsorption behavior of humic acid on aluminum in Enteromorpha prolifera. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:342-357. [PMID: 39219225 DOI: 10.1080/10934529.2024.2396728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
High level of aluminum content in Enteromorpha prolifera posed a growing threat to both its growth and human health. This study focused on exploring the factors, impacts, and process of removing aluminum from Enteromorpha prolifera using humic acid. The results showed that under experimental conditions of 0.0330 g·L-1 humic acid concentration, pH 3.80, 34 °C, and a duration of 40 min, the removal rate was up to 80.18%. The levels of major flavor components, proteins, and amino acids in Enteromorpha prolifera increased significantly after treatment, while polysaccharides and trace elements like calcium and magnesium decreased significantly. Infrared spectroscopy demonstrated that the main functional groups involved in binding with Al3+ during humic acid adsorption were hydroxyl, carboxyl, phenol, and other oxygen-containing groups. The adsorption process of Al3+ by humic acid was a spontaneous phenomenon divided into three key stages: fast adsorption, slow adsorption, and adsorption equilibrium, which resulted from both physical and chemical adsorption effects. This study provided a safe and efficient method in algae metal removal.
Collapse
Affiliation(s)
- Yuke Mo
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Liping Zhou
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Shiqian Fu
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Huicheng Yang
- Zhejiang Marine Development Research Institute, Zhoushan, Zhejiang, P. R. China
| | - Bangchu Lin
- Zhejiang Yulin Technology Co., Ltd., Ningbo, Zhejiang, P. R. China
| | - Jinjie Zhang
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Yongjiang Lou
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Yongyong Li
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
| |
Collapse
|
2
|
Peng HX, Chai F, Chen KH, Huang YX, Wei GJ, Yuan H, Pang YF, Luo SH, Wang CF, Chen WC. Reactive Oxygen Species-Mediated Mitophagy and Cell Apoptosis are Involved in the Toxicity of Aluminum Chloride Exposure in GC-2spd. Biol Trace Elem Res 2024; 202:2616-2629. [PMID: 37715092 DOI: 10.1007/s12011-023-03848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023]
Abstract
Aluminum chloride is an inorganic polymeric coagulant commonly found in daily life and various materials. Although male reproductive toxicity has been associated with AlCl3 exposure, the underlying mechanism remains unclear. This study aimed to examine the impact of AlCl3 exposure on mitophagy and mitochondrial apoptosis in testicular tissue and mouse spermatocytes. Reactive oxygen species (ROS) and ATP levels were measured in GC-2spd after AlCl3 exposure using a multifunctional enzyme labeler. The changes in mitochondrial membrane potential (MMP) and TUNEL were observed through confocal laser microscopy, and the expression of proteins associated with mitophagy and apoptosis was analyzed using Western blot. Our results demonstrated that AlCl3 exposure disrupted mitophagy and increased apoptosis-related protein expression in testicular tissues. In the in vitro experiments, AlCl3 exposure induced ROS production, suppressed cell viability and ATP production, and caused a decrease in MMP, leading to mitophagy and cell apoptosis in GC-2spd cells. Intervention with N-acetylcysteine (NAC) reduced ROS production and partially restored mitochondrial function, thereby reversing the resulting mitophagy and cell apoptosis. Our findings provide evidence that ROS-mediated mitophagy and cell apoptosis play a crucial role in the toxicity of AlCl3 exposure in GC-2spd. These results contribute to the understanding of male reproductive toxicity caused by AlCl3 exposure and offer a foundation for future research in this area.
Collapse
Affiliation(s)
- Hui- Xin Peng
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Fu Chai
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Ke-Heng Chen
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Yan-Xin Huang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Guang-Ji Wei
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Huixiong Yuan
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Yan-Fang Pang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Shi-Hua Luo
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
- Graduate School of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Chun-Fang Wang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
- Graduate School of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Wen-Cheng Chen
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
- Graduate School of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
3
|
Pei C, Todorov P, Cao M, Kong Q, Isachenko E, Rahimi G, Mallmann-Gottschalk N, Uribe P, Sanchez R, Isachenko V. Comparative Transcriptomic Analyses for the Optimization of Thawing Regimes during Conventional Cryopreservation of Mature and Immature Human Testicular Tissue. Int J Mol Sci 2023; 25:214. [PMID: 38203385 PMCID: PMC10778995 DOI: 10.3390/ijms25010214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Cryopreservation of human testicular tissue, as a key element of anticancer therapy, includes the following stages: saturation with cryoprotectants, freezing, thawing, and removal of cryoprotectants. According to the point of view existing in "classical" cryobiology, the thawing mode is the most important consideration in the entire process of cryopreservation of any type of cells, including cells of testicular tissue. The existing postulate in cryobiology states that any frozen types of cells must be thawed as quickly as possible. The technologically maximum possible thawing temperature is 100 °C, which is used in our technology for the cryopreservation of testicular tissue. However, there are other points of view on the rate of cell thawing, according to how thawing should be carried out at physiological temperatures. In fact, there are morphological and functional differences between immature (from prepubertal patients) and mature testicular tissue. Accordingly, the question of the influence of thawing temperature on both types of tissues is relevant. The purpose of this study is to explore the transcriptomic differences of cryopreserved mature and immature testicular tissue subjected to different thawing methods by RNA sequencing. Collected and frozen testicular tissue samples were divided into four groups: quickly (in boiling water at 100 °C) thawed cryopreserved mature testicular tissue (group 1), slowly (by a physiological temperature of 37 °C) thawed mature testicular tissue (group 2), quickly thawed immature testicular tissue (group 3), and slowly thawed immature testicular tissue (group 4). Transcriptomic differences were assessed using differentially expressed genes (DEG), the Kyoto Encyclopedia of Genes and Genomes (KEGG), gene ontology (GO), and protein-protein interaction (PPI) analyses. No fundamental differences in the quality of cells of mature and immature testicular tissue after cryopreservation were found. Generally, thawing of mature and immature testicular tissue was more effective at 100 °C. The greatest difference in the intensity of gene expression was observed in ribosomes of cells thawed at 100 °C in comparison with cells thawed at 37 °C. In conclusion, an elevated speed of thawing is beneficial for frozen testicular tissue.
Collapse
Affiliation(s)
- Cheng Pei
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (E.I.); (N.M.-G.)
| | - Plamen Todorov
- Institute of Biology and Immunology of Reproduction of Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria;
| | - Mengyang Cao
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (E.I.); (N.M.-G.)
| | - Qingduo Kong
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (E.I.); (N.M.-G.)
| | - Evgenia Isachenko
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (E.I.); (N.M.-G.)
| | - Gohar Rahimi
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (E.I.); (N.M.-G.)
- Medizinisches Versorgungszentrum AMEDES für IVF- und Pränatalmedizin in Köln GmbH, 50968 Cologne, Germany
| | - Nina Mallmann-Gottschalk
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (E.I.); (N.M.-G.)
| | - Pamela Uribe
- Center of Excellence in Translational Medicine, Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Temuco 4810296, Chile; (P.U.); (R.S.)
- Department of Internal Medicine, Faculty of Medicine, Universidad de la Frontera, Temuco 4811230, Chile
| | - Raul Sanchez
- Center of Excellence in Translational Medicine, Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Temuco 4810296, Chile; (P.U.); (R.S.)
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de la Frontera, Temuco 4811230, Chile
| | - Volodimir Isachenko
- Department of Obstetrics and Gynecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (C.P.); (Q.K.); (E.I.); (N.M.-G.)
| |
Collapse
|
4
|
Huixin P, Guangji W, Yanxin H, Yanfang P, Huixiong Y, Xiong Z, Yu'an X, Wencheng C. Transcriptome-based analysis of the toxic effects of aluminum chloride exposure on spermatocytes. Toxicol In Vitro 2023; 92:105658. [PMID: 37544489 DOI: 10.1016/j.tiv.2023.105658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/16/2023] [Accepted: 07/30/2023] [Indexed: 08/08/2023]
Abstract
Aluminum chloride (AlCl3) exposure is pervasive in our daily lives. Numerous studies have demonstrated that exposure to AlCl3 can lead to male reproductive toxicity. However, the precise mechanism of action remains unclear. The objective of this study is to investigate the mechanism of aluminum-induced toxicity by analyzing the alterations in the global transcriptome gene profile of mouse spermatocytes (GC-2spd cells) exposed to AlCl3. GC-2spd cells were exposed to concentrations of 0, 1, 2, and 4 mM AlCl3, and high-throughput mRNA-seq was performed to investigate the changes in the transcriptome after exposure to 4 mM AlCl3. Our findings indicate that exposure to AlCl3 led to an increase in oxidative stress, disrupted glutathione metabolism, reduced cell viability, and altered gene expression in mouse spermatocytes. Gene enrichment analysis revealed that the differentially expressed genes (DEGs) were associated with various biological functions such as mitochondrial inner membrane, response to oxidative stress. Furthermore, these DEGs were found to be enriched in pathways including proteasome, glutathione metabolism, oxidative phosphorylation, and Hif-1 signaling pathway. Real-time PCR and western blot were employed to validate the expression alterations of pivotal genes, and the outcomes exhibited concordance with the mRNA-seq findings. This study provides a theoretical basis for revealing the potential mechanism of male reproductive toxicity caused by aluminum exposure.
Collapse
Affiliation(s)
- Peng Huixin
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi,China; Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Wei Guangji
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China; Clinical Laboratory, The People's Hospital of Baise, Baise 530000, Guangxi, China
| | - Huang Yanxin
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi,China; Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Pang Yanfang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi,China
| | - Yuan Huixiong
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi,China
| | - Zou Xiong
- Guangxi Key Laboratory of reproductive health and birth defect prevention, Nanning 530000, Guangxi, China
| | - Xie Yu'an
- Guangxi Key Laboratory of reproductive health and birth defect prevention, Nanning 530000, Guangxi, China.
| | - Chen Wencheng
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi,China; Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China.
| |
Collapse
|