1
|
Xu X, Yang J, Zhang Y, Sui X, Gong Z, Liu S, Chen X, Li X, Wang Y. Ecological risk assessment of heavy metals in tea plantation soil around Tai Lake region in Suzhou, China. STRESS BIOLOGY 2024; 4:15. [PMID: 38363398 PMCID: PMC10873261 DOI: 10.1007/s44154-024-00149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/06/2024] [Indexed: 02/17/2024]
Abstract
Tea plant [Camellia sinensis (L.) O. Kuntze] is one of the important foliar cash crops in China, and its root system absorbs heavy metal (HM) elements enriched in the soil and transports them to the over ground part. In order to ensure the safety of the soil ecological environment and tea raw materials in the tea production area, the HM contents of soil and tea plant leaves in Suzhou tea plantations were detected, the relationship between HMs and soil physicochemical properties was analyzed, and the ecological risk of HMs in tea plantation soils was evaluated by using relevant detection techniques and evaluation models. The results showed that the average pH of tea plantation soils around Tai Lake in Suzhou was within the range suitable for the growth of tea plants. The pH, soil organic matter, total nitrogen, available phosphorus and available potassium of tea plantation soil satisfying the requirements of high quality, high efficiency and high yield ('3H') tea plantation accounted for 47.06%, 26.47%, 8.82%, 79.41% and 67.65%, respectively. Site 2 fully met the requirements of '3H' tea plantation. In addition, the contents of cadmium (Cd) and mercury (Hg) were extremely variable, and the average contents exceeded the background value of soil in Jiangsu Province, but the HM contents of tea leaves all met the pollution-free standard, and the HM contents of tea leaves around Tai Lake in Suzhou were generally at a safe level. The composite ecological risk index ranged from 0.05 to 0.60, and 32 of the 34 sample sites (except site 21 and site 23) are the most suitable agricultural land for tea plantations.
Collapse
Affiliation(s)
- Xiaohan Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiahui Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Zhang
- Jiangsu Land Consolidation and Rehabilitation Center, Nanjing, 210017, China
| | - Xueyan Sui
- Jiangsu Land Consolidation and Rehabilitation Center, Nanjing, 210017, China
- Jiangsu Donghai and Yixing Land Consolidation and Ecological Protection Field Scientific Observation and Research Station, Ministry of Natural Resources, Yixing, 214200, China
| | - Zelong Gong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shujing Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|