1
|
Jaffal K, Chevillard L, Mégarbane B. Lipid Emulsion to Treat Acute Poisonings: Mechanisms of Action, Indications, and Controversies. Pharmaceutics 2023; 15:pharmaceutics15051396. [PMID: 37242638 DOI: 10.3390/pharmaceutics15051396] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Biodetoxification using intravenous lipid emulsion (ILE) in acute poisoning is of growing interest. As well as for local anesthetics, ILE is currently used to reverse toxicity caused by a broad-spectrum of lipophilic drugs. Both pharmacokinetic and pharmacodynamic mechanisms have been postulated to explain its possible benefits, mainly combining a scavenging effect called "lipid sink" and cardiotonic activity. Additional mechanisms based on ILE-attributed vasoactive and cytoprotective properties are still under investigation. Here, we present a narrative review on lipid resuscitation, focusing on the recent literature with advances in understanding ILE-attributed mechanisms of action and evaluating the evidence supporting ILE administration that enabled the international recommendations. Many practical aspects are still controversial, including the optimal dose, the optimal administration timing, and the optimal duration of infusion for clinical efficacy, as well as the threshold dose for adverse effects. Present evidence supports the use of ILE as first-line therapy to reverse local anesthetic-related systemic toxicity and as adjunct therapy in lipophilic non-local anesthetic drug overdoses refractory to well-established antidotes and supportive care. However, the level of evidence is low to very low, as for most other commonly used antidotes. Our review presents the internationally accepted recommendations according to the clinical poisoning scenario and provides the precautions of use to optimize the expected efficacy of ILE and limit the inconveniences of its futile administration. Based on their absorptive properties, the next generation of scavenging agents is additionally presented. Although emerging research shows great potential, several challenges need to be overcome before parenteral detoxifying agents could be considered as an established treatment for severe poisonings.
Collapse
Affiliation(s)
- Karim Jaffal
- Department of Medical and Toxicological Critical Care, Federation of Toxicology, Lariboisière Hospital, 75010 Paris, France
- INSERM UMRS-1144, Paris-Cité University, 75006 Paris, France
| | - Lucie Chevillard
- Department of Medical and Toxicological Critical Care, Federation of Toxicology, Lariboisière Hospital, 75010 Paris, France
- INSERM UMRS-1144, Paris-Cité University, 75006 Paris, France
| | - Bruno Mégarbane
- Department of Medical and Toxicological Critical Care, Federation of Toxicology, Lariboisière Hospital, 75010 Paris, France
- INSERM UMRS-1144, Paris-Cité University, 75006 Paris, France
| |
Collapse
|
2
|
Liu Y, Zhang J, Yu P, Niu J, Yu S. Mechanisms and Efficacy of Intravenous Lipid Emulsion Treatment for Systemic Toxicity From Local Anesthetics. Front Med (Lausanne) 2021; 8:756866. [PMID: 34820396 PMCID: PMC8606423 DOI: 10.3389/fmed.2021.756866] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
Local anesthetics are widely used clinically for perioperative analgesia to achieve comfort in medical treatment. However, when the concentration of local anesthetics in the blood exceeds the tolerance of the body, local anesthetic systemic toxicity (LAST) will occur. With the development and popularization of positioning technology under direct ultrasound, the risks and cases of LAST associated with direct entry of the anesthetic into the blood vessel have been reduced. Clinical occurrence of LAST usually presents as a series of severe toxic reactions such as myocardial depression, which is life-threatening. In addition to basic life support (airway management, advanced cardiac life support, etc.), intravenous lipid emulsion (ILE) has been introduced as a treatment option in recent years and has gradually become the first-line treatment for LAST. This review introduces the mechanisms of LAST and identifies the clinical symptoms displayed by the central nervous system and cardiovascular system. The paper features the multimodal mechanism of LAST reversal by ILE, describes research progress in the field, and identifies other anesthetics involved in the resuscitation process of LAST. Finally, the review presents key issues in lipid therapy. Although ILE has achieved notable success in the treatment of LAST, adverse reactions and contraindications also exist; therefore, ILE requires a high degree of attention during use. More in-depth research on the treatment mechanism of ILE, the resuscitation dosage and method of ILE, and the combined use with other resuscitation measures is needed to improve the efficacy and safety of clinical resuscitation after LAST in the future.
Collapse
Affiliation(s)
- Yang Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiangfeng Niu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Shuchun Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
3
|
Lee SH, Ok SH, Kim JY, Subbarao RB, Bae SI, Hwang Y, Park KE, Kim JW, Sohn JT. Linolenic Acid Attenuates the Vasodilation Induced by Acetylcholine in Isolated Rat Aortae. Dose Response 2019; 17:1559325819894148. [PMID: 31839761 PMCID: PMC6902396 DOI: 10.1177/1559325819894148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 11/17/2022] Open
Abstract
This study aims to examine the effect of linolenic acid on the vasodilation or vasoconstriction induced by acetylcholine and bupivacaine in isolated rat aortae and its underlying mechanism. The effect of linolenic acid on the vasodilation induced by acetylcholine, the calcium ionophore A23187, sodium nitroprusside, and 8-bromoguanosine 3',5'-cyclic monophosphate sodium salt (bromo-cyclic guanosine monophosphate [bromo-cGMP]) in endothelium-intact and endothelium-denuded aortae was examined. Linolenic acid inhibited vasodilation induced by acetylcholine, calcium ionophore A23187, and sodium nitroprusside. However, this fatty acid increased bromo-cGMP-induced vasodilation in endothelium-denuded aortae. Linolenic acid increased bupivacaine-induced contraction in endothelium-intact aortae, whereas it decreased bupivacaine-induced contraction in endothelium-intact aortae with Nω-nitro-l-arginine methyl ester and endothelium-denuded aortae. Linolenic acid inhibited acetylcholine- and bupivacaine-induced phosphorylation of endothelial nitric oxide synthase. Sodium nitroprusside increased cGMP in endothelium-denuded aortic strips, whereas bupivacaine decreased cGMP in endothelium-intact aortic strips. Linolenic acid decreased cGMP levels produced by bupivacaine and sodium nitroprusside. Together, these results suggest that linolenic acid inhibits acetylcholine-induced relaxation by inhibiting a step just prior to nitric oxide-induced cGMP formation. In addition, linolenic acid-mediated inhibition of vasodilation induced by a toxic concentration (3 × 10-4 M) of bupivacaine seems to be partially associated with inhibition of the nitric oxide-cGMP pathway.
Collapse
Affiliation(s)
- Soo Hee Lee
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Seong-Ho Ok
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Ji-Yoon Kim
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Raghavendra Baregundi Subbarao
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Sung Il Bae
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Yeran Hwang
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Kyeong-Eon Park
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Jong Won Kim
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Ju-Tae Sohn
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University College of Medicine, Gyeongsang National University Hospital, Jinju-si, Gyeongsangnam-do, Republic of Korea.,Institute of Health Sciences, Gyeongsang National University, Jinju-si, Republic of Korea
| |
Collapse
|
4
|
Rhee SH, Park SH, Ryoo SH, Karm MH. Lipid emulsion therapy of local anesthetic systemic toxicity due to dental anesthesia. J Dent Anesth Pain Med 2019; 19:181-189. [PMID: 31501776 PMCID: PMC6726891 DOI: 10.17245/jdapm.2019.19.4.181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 11/15/2022] Open
Abstract
Local anesthetic systemic toxicity (LAST) refers to the complication affecting the central nervous system (CNS) and cardiovascular system (CVS) due to the overdose of local anesthesia. Its reported prevalence is 0.27/1000, and the representative symptoms range from dizziness to unconsciousness in the CNS and from arrhythmias to cardiac arrest in the CVS. Predisposing factors of LAST include extremes of age, pregnancy, renal disease, cardiac disease, hepatic dysfunction, and drug-associated factors. To prevent the LAST, it is necessary to recognize the risk factors for each patient, choose a safe drug and dose of local anesthesia, use vasoconstrictor , confirm aspiration and use incremental injection techniques. According to the treatment guidelines for LAST, immediate application of lipid emulsion plays an important role. Although lipid emulsion is commonly used for parenteral nutrition, it has recently been widely used as a non-specific antidote for various types of drug toxicity, such as LAST treatment. According to the recently published guidelines, 20% lipid emulsion is to be intravenously injected at 1.5 mL/kg. After bolus injection, 15 mL/kg/h of lipid emulsion is to be continuously injected for LAST. However, caution must be observed for >1000 mL of injection, which is the maximum dose. We reviewed the incidence, mechanism, prevention, and treatment guidelines, and a serious complication of LAST occurring due to dental anesthesia. Furthermore, we introduced lipid emulsion that has recently been in the spotlight as the therapeutic strategy for LAST.
Collapse
Affiliation(s)
- Seung-Hyun Rhee
- Department of Dental Anesthesiology, Seoul National University Dental Hospital, Seoul, Korea
| | - Sang-Hun Park
- Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, Seoul, Korea
| | - Seung-Hwa Ryoo
- Department of Dental Anesthesiology, Seoul National University Dental Hospital, Seoul, Korea
| | - Myong-Hwan Karm
- Department of Dental Anesthesiology, Seoul National University Dental Hospital, Seoul, Korea
| |
Collapse
|
5
|
Lee SH, Park CS, Ok SH, Kim D, Kim KN, Hong JM, Kim JY, Bae SI, An S, Sohn JT. Bupivacaine-induced contraction is attenuated by endothelial nitric oxide release modulated by activation of both stimulatory and inhibitory phosphorylation (Ser1177 and Thr495) of endothelial nitric oxide synthase. Eur J Pharmacol 2019; 853:121-128. [PMID: 30880179 DOI: 10.1016/j.ejphar.2019.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 02/09/2023]
Abstract
This study examined the mechanism associated with the endothelium-dependent attenuation of vasoconstriction induced by bupivacaine (BPV), with a particular focus on the upstream cellular signaling pathway of endothelial nitric oxide synthase (eNOS) phosphorylation induced by BPV in human umbilical vein endothelial cells (HUVECs). BPV concentration-response curves were investigated in the isolated rat aorta. The effects of Nω-nitro-L-arginine methyl ester (L-NAME), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), methylene blue, calmidazolium, the Src kinase inhibitor 4-amino-3-(4-chlorophenyl)-1-(t-butyl)-1H-pyrazolo[3,4-d]pyrimidine, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) and the combination of L-arginine and L-NAME on BPV-induced contraction in endothelium-intact aorta preparations were examined. The effects of BPV alone and in combination with PP2 on the phosphorylation of eNOS (at Ser1177 or Thr495), caveolin-1 and Src kinase were examined in HUVECs. BPV-induced contraction was lower in endothelium-intact aortae than in endothelium-denuded aortae. L-NAME, ODQ, methylene blue and calmidazolium increased BPV-induced contraction in endothelium-intact aortae, whereas PP2 alone and combined treatment with L-arginine and L-NAME inhibited BPV-induced contraction. Low-concentration BPV (30 µM) induced both stimulatory (Ser1177) and inhibitory (Thr495) phosphorylation of eNOS in HUVECs. However, high-concentration BPV (150 µM) induced only stimulatory (Ser1177) eNOS phosphorylation. Additionally, phosphorylation of Src kinase, caveolin-1 and inhibitory eNOS (Thr495) induced by low-concentration BPV was inhibited by PP2. These results suggest that contraction induced by low-concentration BPV is attenuated by endothelial nitric oxide release, which is modulated both stimulatory (Ser1177) and inhibitory eNOS phosphorylation (Thr495). BPV-induced phosphorylation of eNOS (Thr495) is indirectly mediated by an upstream cellular signaling pathway involving Src kinase (Tyr416) and caveolin-1 (Tyr14).
Collapse
Affiliation(s)
- Soo Hee Lee
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University College of Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 beon-gil, Jinju-si, Gyeongsangnam-do 52727, Republic of Korea
| | - Chang-Shin Park
- Department of Pharmacology, Hypoxia-Related Disease Research Center, Inha Research Institute for Medical Sciences, Inha University College of Medicine, Inha-ro 100, Incheon 22212, Republic of Korea
| | - Seong-Ho Ok
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Changwon Hospital, Changwon 51427, Republic of Korea; Department of Anesthesiology and Pain Medicine, Gyeongsang National University College of Medicine, 15 Jinju-daero 816 beon-gil, Jinju-si, Gyeongsangnam-do 52727, Republic of Korea
| | - Dana Kim
- Department of Pharmacology, Hypoxia-Related Disease Research Center, Inha Research Institute for Medical Sciences, Inha University College of Medicine, Inha-ro 100, Incheon 22212, Republic of Korea
| | - Kyung Nam Kim
- Department of Pharmacology, Hypoxia-Related Disease Research Center, Inha Research Institute for Medical Sciences, Inha University College of Medicine, Inha-ro 100, Incheon 22212, Republic of Korea
| | - Jeong-Min Hong
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea
| | - Ji-Yoon Kim
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 beon-gil, Jinju-si, Gyeongsangnam-do 52727, Republic of Korea
| | - Sung Il Bae
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 beon-gil, Jinju-si, Gyeongsangnam-do 52727, Republic of Korea
| | - Seungmin An
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 beon-gil, Jinju-si, Gyeongsangnam-do 52727, Republic of Korea
| | - Ju-Tae Sohn
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University College of Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 beon-gil, Jinju-si, Gyeongsangnam-do 52727, Republic of Korea; Institute of Health Sciences, Gyeongsang National University, Jinju-si 52727, Republic of Korea.
| |
Collapse
|
6
|
Abstract
The experimental use of lipid emulsion for local anesthetic toxicity was originally identified in 1998. It was then translated to clinical practice in 2006 and expanded to drugs other than local anesthetics in 2008. Our understanding of lipid resuscitation therapy has progressed considerably since the previous update from the American Society of Regional Anesthesia and Pain Medicine, and the scientific evidence has coalesced around specific discrete mechanisms. Intravenous lipid emulsion therapy provides a multimodal resuscitation benefit that includes both scavenging (eg, the lipid shuttle) and nonscavenging components. The intravascular lipid compartment scavenges drug from organs susceptible to toxicity and accelerates redistribution to organs where drug (eg, bupivacaine) is stored, detoxified, and later excreted. In addition, lipid exerts nonscavenging effects that include postconditioning (via activation of prosurvival kinases) along with cardiotonic and vasoconstrictive benefits. These effects protect tissue from ischemic damage and increase tissue perfusion during recovery from toxicity. Other mechanisms have diminished in favor based on lack of evidence; these include direct effects on channel currents (eg, calcium) and mass-effect overpowering a block in mitochondrial metabolism. In this narrative review, we discuss these proposed mechanisms and address questions left to answer in the field. Further work is needed, but the field has made considerable strides towards understanding the mechanisms.
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Enthusiasm for regional anesthesia has been driven by multimodal benefits to patient outcomes. Despite widespread awareness and improved techniques (including the increasing use of ultrasound guidance for block placement), intravascular sequestration and the attendant risk of local anesthetic systemic toxicity (LAST) remains. Intravenous lipid emulsion (ILE) for the treatment of LAST has been endorsed by anesthetic regulatory societies on the basis of animal study and human case report data. The accumulated mass of reporting now permits objective interrogation of published literature. RECENT FINDINGS Although incompletely elucidated the mechanism of action for ILE in LAST seemingly involves beneficial effects on initial drug distribution (i.e., pharmacokinetic effects) and positive cardiotonic and vasoactive effects (i.e., pharmacokinetic effects) acting in concert. Recent systematic review by collaborating international toxicologic societies have provided reserved endorsement for ILE in bupivacaine-induced toxicity, weak support for ILE use in toxicity from other local anesthetics, and largely neutral recommendation for all other drug poisonings. Work since publication of these recommendations has concluded that there is a positive effect on survival for ILE when animal models of LAST are meta-analyzed and evidence of a positive pharmacokinetic effect for lipid in human models of LAST. SUMMARY Lipid emulsion remains first-line therapy (in conjunction with standard resuscitative measures) in LAST. Increasing conjecture as to the clinical efficacy of ILE in LAST, however, calls for high-quality human data to refine clinical recommendations.
Collapse
|
8
|
Ok SH, Hong JM, Lee SH, Sohn JT. Lipid Emulsion for Treating Local Anesthetic Systemic Toxicity. Int J Med Sci 2018; 15:713-722. [PMID: 29910676 PMCID: PMC6001420 DOI: 10.7150/ijms.22643] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/12/2018] [Indexed: 02/07/2023] Open
Abstract
Lipid emulsion has been shown to be an effective treatment for systemic toxicity induced by local anesthetics, which is reflected in case reports. A systemic review and meta-analysis confirm the efficacy of this treatment. Investigators have suggested mechanisms associated with the lipid emulsion-mediated recovery of cardiovascular collapse caused by local anesthetic systemic toxicity; these mechanisms include lipid sink, a widely accepted theory in which highly soluble local anesthetics (particularly bupivacaine) are absorbed into the lipid phase of plasma from tissues (e.g., the heart) affected by local-anesthetic-induced toxicity; enhanced redistribution (lipid shuttle); fatty acid supply; reversal of mitochondrial dysfunction; inotropic effects; glycogen synthase kinase-3β phosphorylation associated with inhibition of the mitochondrial permeability transition pore opening; inhibition of nitric oxide release; and reversal of cardiac sodium channel blockade. The current review includes the following: 1) an introduction, 2) a list of the proposed mechanisms, 3) a discussion of the best lipid emulsion treatment for reversal of local anesthetic toxicity, 4) a description of the effect of epinephrine on lipid emulsion-mediated resuscitation, 5) a description of the recommended lipid emulsion treatment, and 6) a conclusion.
Collapse
Affiliation(s)
- Seong-Ho Ok
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 Beon-gil, Jinju-si, Gyeongsangnam-do, 52727, Republic of Korea.,Institute of Health Sciences, Gyeongsang National University, Jinju-si, 52727, Republic of Korea
| | - Jeong-Min Hong
- Department of Anesthesia and Pain Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Soo Hee Lee
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 Beon-gil, Jinju-si, Gyeongsangnam-do, 52727, Republic of Korea.,Institute of Health Sciences, Gyeongsang National University, Jinju-si, 52727, Republic of Korea
| | - Ju-Tae Sohn
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, 15 Jinju-daero 816 Beon-gil, Jinju-si, Gyeongsangnam-do, 52727, Republic of Korea.,Institute of Health Sciences, Gyeongsang National University, Jinju-si, 52727, Republic of Korea
| |
Collapse
|
9
|
A Lipid Emulsion Reverses Toxic-Dose Bupivacaine-Induced Vasodilation during Tyrosine Phosphorylation-Evoked Contraction in Isolated Rat Aortae. Int J Mol Sci 2017; 18:ijms18020394. [PMID: 28208809 PMCID: PMC5343929 DOI: 10.3390/ijms18020394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/03/2017] [Accepted: 02/07/2017] [Indexed: 01/24/2023] Open
Abstract
The goal of this in vitro study was to examine the effect of a lipid emulsion on toxic-dose bupivacaine-induced vasodilation in a model of tyrosine phosphatase inhibitor sodium orthovanadate-induced contraction in endothelium-denuded rat aortae and to elucidate the associated cellular mechanism. The effect of a lipid emulsion on vasodilation induced by a toxic dose of a local anesthetic during sodium orthovanadate-induced contraction was examined. In addition, the effects of various inhibitors, either bupivacaine alone or a lipid emulsion plus bupivacaine, on protein kinase phosphorylation induced by sodium orthovanadate in rat aortic vascular smooth muscle cells was examined. A lipid emulsion reversed the vasodilation induced by bupivacaine during sodium orthovanadate-induced contraction. The lipid emulsion attenuated the bupivacaine-mediated inhibition of the sodium orthovanadate-induced phosphorylation of protein tyrosine, c-Jun NH₂-terminal kinase (JNK), myosin phosphatase target subunit 1 (MYPT1), phospholipase C (PLC) γ-1 and extracellular signal-regulated kinase (ERK). These results suggest that a lipid emulsion reverses toxic-dose bupivacaine-induced vasodilation during sodium orthovanadate-induced contraction via the activation of a pathway involving either tyrosine kinase, JNK, Rho-kinase and MYPT1 or tyrosine kinase, PLC γ-1 and ERK, and this reversal is associated with the lipid solubility of the local anesthetic and the induction of calcium sensitization.
Collapse
|
10
|
Ok SH, Kim WH, Yu J, Lee Y, Choi MJ, Lim DH, Hwang Y, Kim YA, Sohn JT. Effects of Acidification and Alkalinization on the Lipid Emulsion-Mediated Reversal of Toxic Dose Levobupivacaine-Induced Vasodilation in the Isolated Rat Aorta. Int J Med Sci 2016; 13:68-76. [PMID: 26917987 PMCID: PMC4747872 DOI: 10.7150/ijms.13016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 01/06/2016] [Indexed: 12/16/2022] Open
Abstract
The goal of this in vitro study was to examine the effects of pre-acidification and pre-akalinization on the lipid emulsion-mediated reversal of toxic dose levobupivacaine-induced vasodilation in isolated rat aorta. Isolated aortic rings with and without the nitric oxide synthase inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME) were exposed to four types of Krebs solution (pH 7.0, 7.2, 7.4, and 7.6), followed by the addition of 60 mM potassium chloride. When the toxic dose of levobupivacaine (3 × 10(-4) M) produced a stable and sustained vasodilation in the isolated aortic rings that were precontracted with 60 mM potassium chloride, increasing lipid emulsion concentrations (SMOFlipid(®): 0.24, 0.48, 0.95 and 1.39%) were added to generate concentration-response curves. The effects of mild pre-acidification alone and mild pre-acidification in combination with a lipid emulsion on endothelial nitric oxide synthase (eNOS) phosphorylation in human umbilical vein endothelial cells were investigated by Western blotting. Mild pre-acidification caused by the pH 7.2 Krebs solution enhanced the lipid emulsion-mediated reversal of levobupivacaine-induced vasodilation in isolated endothelium-intact aortic rings, whereas mild pre-acidification caused by the pH 7.2 Krebs solution did not significantly alter the lipid emulsion-mediated reversal of the levobupivacaine-induced vasodilation in isolated endothelium-denuded aortic rings or endothelium-intact aortic rings with L-NAME. A lipid emulsion attenuated the increased eNOS phosphorylation induced by the pH 7.2 Krebs solution. Taken together, these results suggest that mild pre-acidification enhances the lipid emulsion-mediated reversal of toxic dose levobupivacaine-induced vasodilation in the endothelium-intact aorta via the inhibition of nitric oxide.
Collapse
Affiliation(s)
- Seong-Ho Ok
- 1. Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju-si, 52727, Republic of Korea
| | - Won Ho Kim
- 2. Department of Anesthesiology and Pain Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea;; 3. Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine, Jinju-si, 52727, Republic of Korea
| | - Jongsun Yu
- 4. Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju-si, 52727, Republic of Korea
| | - Youngju Lee
- 4. Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju-si, 52727, Republic of Korea
| | - Mun-Jeoung Choi
- 5. Department of Oral and Maxillofacial Surgery, Gyeongsang National University Hospital, Jinju-si, 52727, Republic of Korea
| | - Dong Hoon Lim
- 6. Department of Information Statistics and RINS, Gyeongsang National University, Jinju, 52828, Korea
| | - Yeran Hwang
- 4. Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju-si, 52727, Republic of Korea
| | - Yeon A Kim
- 7. Department of Anatomy and Cell Biology and Mitochondria Hub Regulation Center, Dong-A University College of Medicine, Busan, South Korea
| | - Ju-Tae Sohn
- 1. Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju-si, 52727, Republic of Korea;; 8. Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
11
|
Rat aorta as a pharmacological tool for in vitro and in vivo studies. Life Sci 2016; 145:190-204. [DOI: 10.1016/j.lfs.2015.12.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 11/26/2015] [Accepted: 12/24/2015] [Indexed: 11/24/2022]
|
12
|
Lipid Emulsion Attenuates Acetylcholine-Induced Relaxation in Isolated Rat Aorta. BIOMED RESEARCH INTERNATIONAL 2015; 2015:871545. [PMID: 26273653 PMCID: PMC4530220 DOI: 10.1155/2015/871545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/20/2015] [Accepted: 07/08/2015] [Indexed: 11/17/2022]
Abstract
We investigated the effect of Lipofundin MCT/LCT and Intralipid on acetylcholine-induced nitric oxide- (NO-) mediated relaxation in rat aorta to determine which lipid emulsion (LE) is more potent in terms of inhibition of NO-induced relaxation. Dose-response curves of responses induced by acetylcholine, the calcium ionophore A23187, and sodium nitroprusside were generated using isolated rat aorta with or without LE. The effect of Lipofundin MCT/LCT on acetylcholine-induced endothelial nitric oxide synthase (eNOS) phosphorylation in human umbilical vein endothelial cells (HUVECs) was investigated using western blotting. Lipofundin MCT/LCT (0.1 and 0.2%) attenuated acetylcholine-induced relaxation in endothelium-intact aorta with or without tiron, whereas 0.2% Intralipid only inhibited relaxation. Lipofundin MCT/LCT inhibited relaxation induced by the calcium ionophore A23187 and sodium nitroprusside in endothelium-intact aorta, but Lipofundin MCT/LCT had no effect on sodium nitroprusside-induced relaxation in the endothelium-denuded aorta. Combined pretreatment with l-arginine plus Lipofundin MCT/LCT increased acetylcholine-induced maximal relaxation in endothelium-intact aorta compared with Lipofundin MCT/LCT alone. l-Arginine attenuated Lipofundin MCT/LCT-mediated inhibition of acetylcholine-induced eNOS phosphorylation in HUVECs. Taken together, Lipofundin MCT/LCT attenuated acetylcholine-induced NO-mediated relaxation via an inhibitory effect on the endothelium including eNOS, which is proximal to activation of guanylyl cyclase.
Collapse
|
13
|
Fettiplace MR, Weinberg G. Past, Present, and Future of Lipid Resuscitation Therapy. JPEN J Parenter Enteral Nutr 2015; 39:72S-83S. [DOI: 10.1177/0148607115595979] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/22/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Michael R. Fettiplace
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois
- Research & Development Service, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
- Neuroscience Program, University of Illinois at Chicago, Chicago, Illinois
| | - Guy Weinberg
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois
- Research & Development Service, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
14
|
Ok SH, Byon HJ, Kwon SC, Park J, Lee Y, Hwang Y, Baik J, Choi MJ, Sohn JT. Lipid Emulsion Inhibits Vasodilation Induced by a Toxic Dose of Bupivacaine via Attenuated Dephosphorylation of Myosin Phosphatase Target Subunit 1 in Isolated Rat Aorta. Int J Med Sci 2015; 12:958-67. [PMID: 26664257 PMCID: PMC4661294 DOI: 10.7150/ijms.13299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/10/2015] [Indexed: 12/12/2022] Open
Abstract
Lipid emulsions are widely used for the treatment of systemic toxicity that arises from local anesthetics. The goal of this in vitro study was to examine the cellular mechanism associated with the lipid emulsion-mediated attenuation of vasodilation induced by a toxic dose of bupivacaine in isolated endothelium-denuded rat aorta. The effects of lipid emulsion on vasodilation induced by bupivacaine, mepivacaine, and verapamil were assessed in isolated aorta precontracted with phenylephrine, the Rho kinase stimulant NaF, and the protein kinase C activator phorbol 12,13-dibutyrate (PDBu). The effects of Rho kinase inhibitor Y-27632 on contraction induced by phenylephrine or NaF were assessed. The effects of bupivacaine on intracellular calcium concentrations ([Ca(2+)]i) and tension induced by NaF were simultaneously measured. The effects of bupivacaine alone and lipid emulsion plus bupivacaine on myosin phosphatase target subunit 1 (MYPT1) phosphorylation induced by NaF were examined in rat aortic vascular smooth muscle cells. In precontracted aorta, the lipid emulsion attenuated bupivacaine-induced vasodilation but had no effect on mepivacaine-induced vasodilation. Y-27632 attenuated contraction induced by either phenylephrine or NaF. The lipid emulsion attenuated verapamil-induced vasodilation. Compared with phenylephrine-induced precontracted aorta, bupivacaine-induced vasodilation was slightly attenuated in NaF-induced precontracted aorta. The magnitude of the bupivacaine-induced vasodilation was higher than that of a bupivacaine-induced decrease in [Ca(2+)]i. Bupivacaine attenuated NaF-induced MYPT1 phosphorylation, whereas lipid emulsion pretreatment attenuated the bupivacaine-induced inhibition of MYPT1 phosphorylation induced by NaF. Taken together, these results suggest that lipid emulsions attenuate bupivacaine-induced vasodilation via the attenuation of inhibition of MYPT1 phosphorylation evoked by NaF.
Collapse
Affiliation(s)
- Seong-Ho Ok
- 1. Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju-si, 52727, Republic of Korea
| | - Hyo-Jin Byon
- 2. Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea; ; 8. Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine, Jinju-si, 52727, Republic of Korea
| | - Seong-Chun Kwon
- 3. Department of Physiology, Institute for Clinical and Translational Research, Catholic Kwandong University College of Medicine, Gangneung, 25601, Korea
| | - Jungchul Park
- 4. Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju, 660-702, Republic of Korea
| | - Youngju Lee
- 4. Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju, 660-702, Republic of Korea
| | - Yeran Hwang
- 4. Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju, 660-702, Republic of Korea
| | - Jiseok Baik
- 5. Department of Anesthesiology and Pain Medicine, Pusan National University Hospital, Biomed Research Institute, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Mun-Jeoung Choi
- 6. Department of Oral and Maxillofacial Surgery, Gyeongsang National University Hospital, Jinju, 660-702, Republic of Korea
| | - Ju-Tae Sohn
- 1. Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju-si, 52727, Republic of Korea; ; 7. Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
15
|
Ok SH, Kwon SC, Kang S, Choi MJ, Sohn JT. Mepivacaine-induced intracellular calcium increase appears to be mediated primarily by calcium influx in rat aorta without endothelium. Korean J Anesthesiol 2014; 67:404-11. [PMID: 25558341 PMCID: PMC4280478 DOI: 10.4097/kjae.2014.67.6.404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/21/2014] [Accepted: 07/07/2014] [Indexed: 11/28/2022] Open
Abstract
Background Mepivacaine induces contraction or decreased blood flow both in vivo and in vitro. Vasoconstriction is associated with an increase in the intracellular calcium concentration ([Ca2+]i). However, the mechanism responsible for the mepivacaine-evoked [Ca2+]i increase remains to be determined. Therefore, the objective of this in vitro study was to examine the mechanism responsible for the mepivacaine-evoked [Ca2+]i increment in isolated rat aorta. Methods Isometric tension was measured in isolated rat aorta without endothelium. In addition, fura-2 loaded aortic muscle strips were illuminated alternately (48 Hz) at two excitation wavelengths (340 and 380 nm). The ratio of F340 to F380 (F340/F380) was regarded as an amount of [Ca2+]i. We investigated the effects of nifedipine, 2-aminoethoxydiphenylborate (2-APB), gadolinium chloride hexahydrate (Gd3+), low calcium level and Krebs solution without calcium on the mepivacaine-evoked contraction in isolated rat aorta and on the mepivacaine-evoked [Ca2+]i increment in fura-2 loaded aortic strips. We assessed the effect of verapamil on the mepivacaine-evoked [Ca2+]i increment. Results Mepivacaine produced vasoconstriction and increased [Ca2+]i. Nifedipine, 2-APB and low calcium attenuated vasoconstriction and the [Ca2+]i increase evoked by mepivacaine. Verapamil attenuated the mepivacaine-induced [Ca2+]i increment. Calcium-free solution almost abolished mepivacaine-induced contraction and strongly attenuated the mepivacaineinduced [Ca2+]i increase. Gd3+ had no effect on either vasoconstriction or the [Ca2+]i increment evoked by mepivacaine. Conclusions The mepivacaine-evoked [Ca2+]i increment, which contributes to mepivacaine-evoked contraction, appears to be mediated mainly by calcium influx and partially by calcium released from the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Seong-Ho Ok
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Seong-Chun Kwon
- Department of Physiology, Catholic Kwandong University College of Medicine, Gangneung, Korea
| | - Sebin Kang
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Korea
| | - Mun-Jeoung Choi
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University Hospital, Jinju, Korea
| | - Ju-Tae Sohn
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Korea
| |
Collapse
|
16
|
Ok SH, Bae SI, Kwon SC, Park JC, Kim WC, Park KE, Shin IW, Lee HK, Chung YK, Choi MJ, Sohn JT. Bupivacaine-induced Vasodilation Is Mediated by Decreased Calcium Sensitization in Isolated Endothelium-denuded Rat Aortas Precontracted with Phenylephrine. Korean J Pain 2014; 27:229-38. [PMID: 25031808 PMCID: PMC4099235 DOI: 10.3344/kjp.2014.27.3.229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND A toxic dose of bupivacaine produces vasodilation in isolated aortas. The goal of this in vitro study was to investigate the cellular mechanism associated with bupivacaine-induced vasodilation in isolated endotheliumdenuded rat aortas precontracted with phenylephrine. METHODS Isolated endothelium-denuded rat aortas were suspended for isometric tension recordings. The effects of nifedipine, verapamil, iberiotoxin, 4-aminopyridine, barium chloride, and glibenclamide on bupivacaine concentration-response curves were assessed in endothelium-denuded aortas precontracted with phenylephrine. The effect of phenylephrine and KCl used for precontraction on bupivacaine-induced concentration-response curves was assessed. The effects of verapamil on phenylephrine concentration-response curves were assessed. The effects of bupivacaine on the intracellular calcium concentration ([Ca(2+)]i) and tension in aortas precontracted with phenylephrine were measured simultaneously with the acetoxymethyl ester of a fura-2-loaded aortic strip. RESULTS Pretreatment with potassium channel inhibitors had no effect on bupivacaine-induced relaxation in the endothelium-denuded aortas precontracted with phenylephrine, whereas verapamil or nifedipine attenuated bupivacaine-induced relaxation. The magnitude of the bupivacaine-induced relaxation was enhanced in the 100 mM KCl-induced precontracted aortas compared with the phenylephrine-induced precontracted aortas. Verapamil attenuated the phenylephrine-induced contraction. The magnitude of the bupivacaine-induced relaxation was higher than that of the bupivacaine-induced [Ca(2+)]i decrease in the aortas precontracted with phenylephrine. CONCLUSIONS Taken together, these results suggest that toxic-dose bupivacaine-induced vasodilation appears to be mediated by decreased calcium sensitization in endothelium-denuded aortas precontracted with phenylephrine. In addition, potassium channel inhibitors had no effect on bupivacaine-induced relaxation. Toxic-dose bupivacaine- induced vasodilation may be partially associated with the inhibitory effect of voltage-operated calcium channels.
Collapse
Affiliation(s)
- Seong Ho Ok
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Sung Il Bae
- Department of Anesthesiology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Seong Chun Kwon
- Department of Physiology, Kwandong University College of Medicine, Gangneung, Korea
| | - Jung Chul Park
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Woo Chan Kim
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Kyeong Eon Park
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Il Woo Shin
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Heon Keun Lee
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Young Kyun Chung
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Mun Jeoung Choi
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University Hospital, Jinju, Korea
| | - Ju Tae Sohn
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, Korea
| |
Collapse
|
17
|
Shin IW, Hah YS, Kim C, Park J, Shin H, Park KE, Ok SH, Lee HK, Chung YK, Shim HS, Lim DH, Sohn JT. Systemic blockage of nitric oxide synthase by L-NAME increases left ventricular systolic pressure, which is not augmented further by Intralipid®. Int J Biol Sci 2014; 10:367-76. [PMID: 24719554 PMCID: PMC3979989 DOI: 10.7150/ijbs.8048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/05/2014] [Indexed: 11/19/2022] Open
Abstract
Intravenous lipid emulsions (LEs) are effective in the treatment of toxicity associated with various drugs such as local anesthetics and other lipid soluble agents. The goals of this study were to examine the effect of LE on left ventricular hemodynamic variables and systemic blood pressure in an in vivo rat model, and to determine the associated cellular mechanism with a particular focus on nitric oxide. Two LEs (Intralipid® 20% and Lipofundin® MCT/LCT 20%) or normal saline were administered intravenously in an in vivo rat model following induction of anesthesia by intramuscular injection of tiletamine/zolazepam and xylazine. Left ventricular systolic pressure (LVSP), blood pressure, heart rate, maximum rate of intraventricular pressure increase, and maximum rate of intraventricular pressure decrease were measured before and after intravenous administration of various doses of LEs or normal saline to an in vivo rat with or without pretreatment with the non-specific nitric oxide synthase inhibitor Nω-nitro-L-arginine-methyl ester (L-NAME). Administration of Intralipid® (3 and 10 ml/kg) increased LVSP and decreased heart rate. Pretreatment with L-NAME (10 mg/kg) increased LSVP and decreased heart rate, whereas subsequent treatment with Intralipid® did not significantly alter LVSP. Intralipid® (10 ml/kg) increased mean blood pressure and decreased heart rate. The increase in LVSP induced by Lipofundin® MCT/LCT was greater than that induced by Intralipid®. Intralipid® (1%) did not significantly alter nitric oxide donor sodium nitroprusside-induced relaxation in endothelium-denuded rat aorta. Taken together, systemic blockage of nitric oxide synthase by L-NAME increases LVSP, which is not augmented further by intralipid®.
Collapse
Affiliation(s)
- Il-Woo Shin
- 1. Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Young-Sool Hah
- 2. Clinical Research Institute, Gyeongsang National University Hospital, Jinju, Korea
| | - Cheol Kim
- 3. Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Jungchul Park
- 4. Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Heewon Shin
- 5. Department of Biological Sciences, California State University, Long Beach, California, USA
| | - Kyeong-Eon Park
- 4. Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Seong-Ho Ok
- 1. Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Heon-Keun Lee
- 1. Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Young-Kyun Chung
- 1. Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Haeng Seon Shim
- 6. Department of Anesthesiology and Pain Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Dong Hoon Lim
- 7. Department of Information Statistics and RINS, Gyeongsang National University, Jinju, 660-701, Korea
| | - Ju-Tae Sohn
- 1. Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea
| |
Collapse
|
18
|
Shin IW, Sohn JT. Lipid emulsion treatment of systemic toxicity induced by local anesthetics or other drugs. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2014. [DOI: 10.5124/jkma.2014.57.6.537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Il-Woo Shin
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Ju-Tae Sohn
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Korea
| |
Collapse
|