1
|
Tibúrcio FC, Leite APS, Muller KS, Pinto CG, Valentino E, Castro PATDS, Matsumura CY, de Carvalho SF, Matheus SMM. Effects of Nandrolone Decanoate on Skeletal Muscle and Neuromuscular Junction of Sedentary and Exercised Rats. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1940. [PMID: 38003989 PMCID: PMC10673219 DOI: 10.3390/medicina59111940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: Nandrolone decanoate (ND) is the most widely used among the anabolic androgenic steroids (AAS), synthetic substances derived from testosterone, to improve muscular and health gains associated with exercises. The AAS leads to physical performance enhancement and presents anti-aging properties, but its abuse is associated with several adverse effects. Supraphysiological doses of AAS with or without physical exercise can cause morphological and functional alterations in neuromuscular interactions. This study aims to investigate the effects of ND supraphysiological doses in neuromuscular interactions, focusing on the soleus muscle and its neuromuscular junctions (NMJs) in rats, associated or not with physical exercise. Materials and Methods: Forty male Sprague Dawley rats were divided into four groups: sedentary and exercised groups, with or without ND at the dose of 10 mg/kg/week. The animals were treated for eight weeks, with intramuscular injections, and the soleus muscle was collected for morphological analyses. Results: The supraphysiological doses of ND in the sedentary group caused muscle degeneration, evidenced by splitting fibers, clusters of small fibers, irregular myofibrils, altered sarcomeres, an increase in collagen deposition and in the number of type I muscle fibers (slow-twitch) and central nuclei, as well as a decrease in fibers with peripheral nuclei. On the other hand, in the ND exercise group, there was an increase in the NMJs diameter with scattering of its acetylcholine receptors, although no major morphological changes were found in the skeletal muscle. Thus, the alterations caused by ND in sedentary rats were partially reversed by physical exercise. Conclusions: The supraphysiological ND exposure in the sedentary rats promoted an increase in muscle oxidative pattern and adverse morphological alterations in skeletal muscle, resulting from damage or post-injury regeneration. In the ND-exercised rats, no major morphological changes were found. Thus, the physical exercise partially reversed the alterations caused by ND in sedentary rats.
Collapse
Affiliation(s)
- Felipe Cantore Tibúrcio
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil; (F.C.T.); (A.P.S.L.); (K.S.M.); (C.G.P.)
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Ana Paula Silveira Leite
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil; (F.C.T.); (A.P.S.L.); (K.S.M.); (C.G.P.)
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Kevin Silva Muller
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil; (F.C.T.); (A.P.S.L.); (K.S.M.); (C.G.P.)
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Carina Guidi Pinto
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil; (F.C.T.); (A.P.S.L.); (K.S.M.); (C.G.P.)
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Erick Valentino
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Paula Aiello Tomé de Souza Castro
- Department of Physical Therapy, Center for Biological and Health Sciences, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Cintia Yuri Matsumura
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Shelly Favorito de Carvalho
- Electron Microscopy Center, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil;
| | - Selma Maria Michelin Matheus
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| |
Collapse
|
2
|
Motevalian M, Joukar S, Esmaeili-Mahani S, Karimi A, Masoumi-Ardakani Y, Safari S. Interaction of high-intensity endurance exercise and nandrolone on cardiac remodeling: role of adipo-cardiac axis. Horm Mol Biol Clin Investig 2021; 43:63-70. [PMID: 34786896 DOI: 10.1515/hmbci-2021-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/02/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Given the cardiac pathological remodeling following to anabolic androgenic steroids (AASs) consumption, we examined the effect of chronic administration of nandrolone decanoate with high-intensity endurance exercise on the left ventricular hypertrophy index, levels of hydroxyproline, tumor necrosis factor-alpha (TNF-α), adiponectin (APN) and its receptors (AdipoR1 and AdipoR2) expression in rats' hearts. METHODS The male Wistar rats randomly divided to six groups included the control (CTL), exercise (Ex), nandrolone (Nan), vehicle (Arach), trained vehicle (Ex + Arach), and trained nandrolone (Ex + Nan) groups that were treated for eight weeks. RESULTS Nandrolone consumption significantly enhanced the hypertrophy index (p<0.05) and exercise intensified this effect. It also increased the level of cardiac hydroxyproline (p<0.001), however exercise completely masked this effect. The values of TNF-α protein and AdipoR1 protein significantly increased in trained nandrolone-treated (Ex + Nan) group in comparison with CTL group (p<0.05), however, did not show significant alteration in Nan or Ex groups. High-intensity endurance exercise significantly enhanced the AdipoR2 protein (p<0.05), but, co-administration of nandrolone with exercise prevented this effect. The mRNA expression of AdipoR1 significantly reduced in the animals that received nandrolone for eight weeks and exercise recovered this effect (p<0.001). CONCLUSIONS Despite an additive effect of high-intensity endurance exercise plus nandrolone on TNF-α level, their effects on hydroxyproline and APN receptors expression is incompatible in heart of rat. It is suggests a part of beneficial regulatory role of endurance exercise against nandrolone induced heart remodeling may apply through modulation of APN system.
Collapse
Affiliation(s)
- Manijeh Motevalian
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Siyavash Joukar
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology and Pharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman, Kerman, Iran
| | - Abdollah Karimi
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaser Masoumi-Ardakani
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Sepideh Safari
- Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman, Kerman, Iran.,Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Torrisi M, Pennisi G, Russo I, Amico F, Esposito M, Liberto A, Cocimano G, Salerno M, Li Rosi G, Di Nunno N, Montana A. Sudden Cardiac Death in Anabolic-Androgenic Steroid Users: A Literature Review. ACTA ACUST UNITED AC 2020; 56:medicina56110587. [PMID: 33158202 PMCID: PMC7694262 DOI: 10.3390/medicina56110587] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Background and objectives: Anabolic-androgenic steroids (AASs) are a group of synthetic molecules derived from testosterone and its related precursors. AASs are widely used illicitly by adolescents and athletes, especially by bodybuilders, both for aesthetic uses and as performance enhancers to increase muscle growth and lean body mass. When used illicitly they can damage health and cause disorders affecting several functions. Sudden cardiac death (SCD) is the most common medical cause of death in athletes. SCD in athletes has also been associated with the use of performance-enhancing drugs. This review aimed to focus on deaths related to AAS abuse to investigate the cardiac pathophysiological mechanism that underlies this type of death, which still needs to be fully investigated. Materials and Methods: This review was conducted using PubMed Central and Google Scholar databases, until 21 July 2020, using the following key terms: “((Sudden cardiac death) OR (Sudden death)) AND ((androgenic anabolic steroid) OR (androgenic anabolic steroids) OR (anabolic-androgenic steroids) OR (anabolic-androgenic steroid))”. Thirteen articles met the inclusion and exclusion criteria, for a total of 33 reported cases. Results: Of the 33 cases, 31 (93.9%) were males while only 2 (61%) were females. Mean age was 29.79 and, among sportsmen, the most represented sports activity was bodybuilding. In all cases there was a history of AAS abuse or a physical phenotype suggesting AAS use; the total usage period was unspecified in most cases. In 24 cases the results of the toxicological analysis were reported. The most detected AASs were nandrolone, testosterone, and stanozolol. The most frequently reported macroscopic alterations were cardiomegaly and left ventricular hypertrophy, while the histological alterations were foci of fibrosis and necrosis of the myocardial tissue. Conclusions: Four principal mechanisms responsible for SCD have been proposed in AAS abusers: the atherogenic model, the thrombosis model, the model of vasospasm induced by the release of nitric oxide, and the direct myocardial injury model. Hypertrophy, fibrosis, and necrosis represent a substrate for arrhythmias, especially when combined with exercise. Indeed, AAS use has been shown to change physiological cardiac remodeling of athletes to pathophysiological cardiac hypertrophy with an increased risk of life-threatening arrhythmias.
Collapse
Affiliation(s)
- Marco Torrisi
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies, “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (M.T.); (G.P.); (I.R.); (F.A.); (M.E.); (A.L.); (G.C.); (M.S.)
| | - Giuliana Pennisi
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies, “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (M.T.); (G.P.); (I.R.); (F.A.); (M.E.); (A.L.); (G.C.); (M.S.)
| | - Ilenia Russo
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies, “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (M.T.); (G.P.); (I.R.); (F.A.); (M.E.); (A.L.); (G.C.); (M.S.)
| | - Francesco Amico
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies, “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (M.T.); (G.P.); (I.R.); (F.A.); (M.E.); (A.L.); (G.C.); (M.S.)
| | - Massimiliano Esposito
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies, “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (M.T.); (G.P.); (I.R.); (F.A.); (M.E.); (A.L.); (G.C.); (M.S.)
| | - Aldo Liberto
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies, “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (M.T.); (G.P.); (I.R.); (F.A.); (M.E.); (A.L.); (G.C.); (M.S.)
| | - Giuseppe Cocimano
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies, “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (M.T.); (G.P.); (I.R.); (F.A.); (M.E.); (A.L.); (G.C.); (M.S.)
| | - Monica Salerno
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies, “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (M.T.); (G.P.); (I.R.); (F.A.); (M.E.); (A.L.); (G.C.); (M.S.)
| | - Giuseppe Li Rosi
- Department of Law, Criminology, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Nunzio Di Nunno
- Department of History, Society and Studies on Humanity, University of Salento, 73100 Lecce, Italy;
| | - Angelo Montana
- Legal Medicine, Department of Medical, Surgical and Advanced Technologies, “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (M.T.); (G.P.); (I.R.); (F.A.); (M.E.); (A.L.); (G.C.); (M.S.)
- Correspondence: ; Tel.: +39-3287655428
| |
Collapse
|
4
|
Akbari Z, Esmailidehaj M, Avarand E, Shariati M, Pourkhalili K. Ischemic Preconditioning Efficacy Following Anabolic Steroid Usage: A Clear Difference Between Sedentary and Exercise-Trained Rat Hearts. Cardiovasc Toxicol 2020; 19:287-296. [PMID: 30535662 DOI: 10.1007/s12012-018-9497-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous studies show that anabolic steroids impair innate cardioprotective mechanisms. Here, we investigated the effect of supraphysiological doses of nandrolone on ischemic preconditioning (IPC) as a potent cardioprotective tool against ischemia reperfusion (IR) injury in rat hearts. Male Wistar rats in two experimental settings of sedentary and exercise-trained (60 min/day swimming, 5 days/week, for 8 weeks) were either pretreated with intramuscular injections of arachis oil (Arach, n = 16) as vehicle or nandrolone decanoate (ND, n = 8), 10 mg/kg/week, for 8 weeks. At the end, the hearts were excised and perfused in a Langendorff system. Then, the vehicle-treated hearts subdivided into the IR (30 min of LAD coronary artery occlusion and 120 min reperfusion, n = 8) and IPC (three cycles of 3-min ischemia and 3-min reperfusion before test ischemia, n = 8) groups and nandrolone-treated hearts served as ND + IPC (nandrolone pretreatment before IR and IPC protocols, n = 8) group. Post-ischemic cardiac function and infarct size were assessed. Reperfusion arrhythmias were analyzed using a standard scoring system. In sedentary hearts, ND slightly increased heart-to-body weight ratio and increased baseline cardiac contractile function. In trained hearts, ND markedly increased heart-to-body weight ratio which was also associated with enhanced baseline cardiac function. ND pretreatment enhanced protective effects of IPC in sedentary group; however, abolished these effects in exercise-trained group. The arrhythmia score was not significantly different between nandrolone-treated groups vs. respective preconditioned groups. Our findings show that ND impairs IPC-induced cardioprotection in exercise-trained rat hearts. Cardiac hypertrophy seems to play a crucial role in this response.
Collapse
Affiliation(s)
- Zahra Akbari
- Department of Physiology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mansour Esmailidehaj
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ebrahim Avarand
- Department of Biology, Islamic Azad University, Kazerun, Iran
| | | | - Khalil Pourkhalili
- Department of Physiology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
5
|
Raji-amirhasani A, Joukar S, Naderi-Boldaji V, Bejeshk MA. Mild exercise along with limb blood-flow restriction modulates the electrocardiogram, angiotensin, and apelin receptors of the heart in aging rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:558-563. [PMID: 29942444 PMCID: PMC6015241 DOI: 10.22038/ijbms.2018.24796.6165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/28/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Considering the lack of information, the effects of mild endurance exercise plus blood flow restriction (BFR) on electrocardiographic parameters, hypertrophy index, and expression of angiotensin II receptors type 1 (AT1R) and type 2 (AT2R) and apelin receptor (APJ) were assessed in hearts of old male rats. MATERIALS AND METHODS Animal were grouped as control (CTL), Sham (Sh), lower extremities blood flow restriction (BFR), exercise (Ex), Sham + exercise (Sh + Ex), and blood flow restriction + exercise (BFR + Ex). RESULTS Exercise plus BFR significantly decreased the corrected QT (QTc) interval (P<0.01 vs CTL and Sh groups) and increased the heart hypertrophy index (P<0.05 vs CTL and BFR groups). Exercise alone increased expression of the APJ (P<0.01, vs CTL, Sh, and BFR groups) and AT2 receptors (P<0.001, vs Sh, CTL, BFR, and BFR + exercise groups), whereas it reduced expression of AT1R (P<0.01 in comparison with CTL, Sh, and BFR groups). Exercise plus BFR caused a significant increase in APJ (P<0.05 vs Ex, Sh+Ex and P<0.001 vs CTL, Sh, and BFR groups) and also expression of AT1R (P<0.001 vs Ex, Sh + Ex, CTL, Sh, and P<0.01 vs BFR groups). Accompaniment of exercise with BFR destroyed the effect of exercise on the expression of AT2R. CONCLUSION Mild endurance exercise plus BFR can alter the expression of angiotensin II and apelin receptors that leads to cardiac hypertrophy and improves the ventricular conductivity of aging rats.
Collapse
Affiliation(s)
- Alireza Raji-amirhasani
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Siyavash Joukar
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Science, Kerman, Iran
| | - Vida Naderi-Boldaji
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad-Abbas Bejeshk
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
6
|
Karimi A, Joukar S, Najafipour H, Masoumi-Ardakani Y, Shahouzehi B. Low-intensity endurance exercise plus nandrolone decanoate modulates cardiac adiponectin and its receptors. ACTA ACUST UNITED AC 2017; 37:29-33. [PMID: 28544314 DOI: 10.1111/aap.12056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/17/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022]
Abstract
Vast adverse effects of anabolic-androgenic steroids (AASs) on athletes' cardiovascular systems have been reported. However, there is still a lack of adequate information regarding the pathways and mechanisms involved. We tested the hypothesis that adiponectin and its receptors in the heart may be affected by long-term use of AASs alongside exercising. Male Wistar rats were randomized into the control (CTL), exercise (EX), nandrolone (Nan), arachis (Arach) group which treated with arachis as vehicle, trained vehicle (EX+Arach) and trained nandrolone (EX+Nan) groups that were treated for 8 weeks. One day after the end of the protocol, animals were sacrificed and their hearts were frozen. TNF-α and adiponectin proteins of hearts were evaluated quantitatively by ELISA kits, and Western blot analysis was used for measuring adiponectin receptor protein expression. TNF-α protein increased significantly in the EX+Nan group (P<.05 vs CTL group). The AdipoR1 protein was significantly higher in the presence of nandrolone alongside exercise (P<.05 vs Nan and EX+Arach groups, P<.01 vs CTL and Arach groups). In addition, AdipoR2 protein enhanced in the EX+Nan group when compared with the other groups (P<.05 vs EX and EX+Arach groups, P<.01 vs CTL, Arach and Nan groups). Chronic nandrolone plus mild endurance exercise may be associated with imbalance in pro-/anti-inflammatory cytokines and may induce a positive modulatory effect on cardiac adiporeceptors in rat. Further studies are required before these findings can be generalized to humans.
Collapse
Affiliation(s)
- A Karimi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - S Joukar
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology and Pharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - H Najafipour
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Y Masoumi-Ardakani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - B Shahouzehi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Joukar S, Vahidi R, Farsinejad A, Asadi-Shekaari M, Shahouzehi B. Ameliorative Effects of Endurance Exercise with Two Different Intensities on Nandrolone Decanoate-Induced Neurodegeneration in Rats: Involving Redox and Apoptotic Systems. Neurotox Res 2017; 32:41-49. [PMID: 28144902 DOI: 10.1007/s12640-017-9705-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
Abstract
Despite the importance of this issue, less has been paid to the influence of exercise on the neural side effects of anabolic androgenic steroids and mechanisms. We investigated the effects of two levels of endurance exercise on neurodegeneration side effects of nandrolone. The study period was 8 weeks. Wistar rats were divided into nine groups including the control (CTL) group, mild exercise (mEx) group, and vehicle (Arach) group which received arachis oil intramuscularly, nandrolone (Nan) group which received nandrolone decanoate 5 mg/kg two times weekly, mEx+Arach group which treated with arachis oil along with mild exercise, mEx+Nan group which treated with nandrolone along with mild exercise, severe exercise (sEx) group, sEx+Arach, and sEx+Nan groups. Finally, brain samples were taken for histopathological, biochemical, and western blot analysis. Nandrolone significantly decreased the intact cells of the hippocampus, total antioxidant capacity (TAC) (P < 0.05 versus CTL and Arach groups), TAC to malondialdehyde ratio (TAC/MDA), and Bcl-2. Nandrolone increased the Bax/Bcl-2 ratio of the brain tissue (P < 0.01 versus CTL and Arach groups). Combination of mild exercise and nandrolone rescued the intact cells to some extent, and this effect was associated with the improvement of Bcl-2 level and Bax/Bcl-2 ratio of brain tissue. Combination of severe exercise and nandrolone rescued the intact cells and improved the TAC, TAC/MDA, and Bax/Bcl-2 ratios. The findings suggest that low- and high-intensity endurance exercise decreased the risk of neurodegeneration effect of nandrolone in the hippocampus of rats. This effect can be explained by the regulation of the redox system and cell homeostasis.
Collapse
Affiliation(s)
- Siyavash Joukar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. .,Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. .,Department of Physiology and Pharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran. .,Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, P.O. Box 7616914115, Kerman, Iran.
| | - Reza Vahidi
- Department of Veterinary Sciences, Baft Branch, Islamic Azad University, Baft, Iran.
| | - Alireza Farsinejad
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Department of Laboratory Science, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Asadi-Shekaari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Beydolah Shahouzehi
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, P.O. Box 7616914115, Kerman, Iran
| |
Collapse
|
8
|
Nascimento AMD, Lima EMD, Brasil GA, Caliman IF, Silva JFD, Lemos VS, Andrade TUD, Bissoli NS. Serca2a and Na+/Ca2+ exchanger are involved in left ventricular function following cardiac remodelling of female rats treated with anabolic androgenic steroid. Toxicol Appl Pharmacol 2016; 301:22-30. [DOI: 10.1016/j.taap.2016.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/16/2016] [Accepted: 04/01/2016] [Indexed: 11/16/2022]
|
9
|
Nasri HR, Joukar S, Kheradmand H, Poursalehi HR, Dabiri S. Coadministration of Atorvastatin and Amiodarone Increases the Risk of Pulmonary Fibrosis in Rats. Med Princ Pract 2015; 25:150-4. [PMID: 26544718 PMCID: PMC5588350 DOI: 10.1159/000442202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 11/05/2015] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate the effect of atorvastatin administration on amiodarone-induced pulmonary fibrosis in rats. MATERIALS AND METHODS Thirty-six male Wistar rats were randomly divided into 4 groups. The control group (CTL) received distilled water (0.3 ml intratracheally on days 0 and 2 and 0.5 ml orally from day 0 for 3 weeks). The atorvastatin group (AT), in addition to intratracheal distilled water, received 1 mg/kg of atorvastatin orally from day 0 for 3 weeks. The amiodarone group (AMI) received 2 intratracheal instillations of amiodarone (6.25 mg/kg in 0.3 ml of water) on days 0 and 2 and 0.5 ml of distilled water (like the CTL). The amiodarone plus atorvastatin group (AMI + AT) received both these drugs (same doses and methods as for the AMI and AT). After 28 days, the rate of lung fibrosis was estimated according to pathological criteria of lung sections and measurements of hydroxyproline in pieces of left lung tissue. RESULTS The lung hydroxyproline content was higher in the treated groups (CTL: 0.35 ± 0.017, AT: 0.38 ± 0.012, AMI: 0.375 ± 0.018 and AMI + AT: 0.38 ± 0.012 unit/mg protein), but did not reach significance when compared with the CTL (p = 0.56). Amiodarone administration significantly increased the score of pulmonary fibrosis (0.5) in comparison with the AT (0.125) and CTL (0) (p < 0.5). The combination of amiodarone and atorvastatin exacerbated the pulmonary fibrosis (1.5; p < 0.01) compared to the AMI (0.5; p < 0.001), AT (0.125) and CTL (0). CONCLUSION In this study, the concomitant administration of amiodarone and atorvastatin increased pulmonary fibrosis in rats.
Collapse
Affiliation(s)
- Hamid-Reza Nasri
- Physiology Research Center, Institute of Neuropharmacology, Kerman, Iran
- Physiology and Pharmacology, Cardiology, Kerman University of Medical Sciences, Kerman, Iran
| | - Siyavash Joukar
- Physiology and Pharmacology, Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, and Departments, Kerman University of Medical Sciences, Kerman, Iran
- Physiology and Pharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Kheradmand
- Physiology and Pharmacology, Cardiology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Shahriar Dabiri
- Physiology and Pharmacology, Pathology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|