1
|
Wang CC, Chang TY, Peng PJ, Chan DC, Chiang CK, Liu SH. Role of advanced glycation end-products in age-associated kidney dysfunction in naturally aging mice. Life Sci 2024; 354:122984. [PMID: 39151883 DOI: 10.1016/j.lfs.2024.122984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
AIMS Advanced glycation end-products (AGEs) are implicated in the age-related decline of renal function, exacerbated by conditions, such as hyperglycemia and oxidative stress. The accumulation of AGEs in the kidneys contributes to the progressive decline in renal function observed with aging. However, the precise role and mechanisms of AGEs in the age-related decline of renal function remain unclear. In this study, we investigated the impact and potential mechanisms of AGEs on aging kidneys in naturally aging mice. MATERIALS AND METHODS Male C57BL/6 mice were divided into three groups: 6-, 57-, and 107-week-old. First, the 6- and 107-week-old mice were euthanized. The remaining mice were divided into young (6 weeks) and old (57 weeks) groups. The 57-week-old mice were orally administered aminoguanidine (100 mg/kg/day), an AGEs inhibitor, or vehicle for 13 weeks, resulting in a final age of 70 weeks. The serum and kidney tissues were collected for biochemical measurement, histological examination, immunohistochemistry staining, and immunoblotting analysis. KEY FINDINGS Our findings revealed a notable accumulation of AGEs in both serum and kidney tissue specimens and renal dysfunction in naturally aging mice. Aminoguanidine not only reversed AGEs accumulation but also ameliorated renal dysfunction. Additionally, aminoguanidine attenuated the upregulation of fibrosis markers (phosphorylated p38/α-SMA and C/EBP homologous protein, CHOP), senescence markers (p53 and p21), and oxidative stress marker (4-HNE) in the aging kidneys. SIGNIFICANCE These findings underscore the critical role of AGEs in age-related renal dysfunction and highlight the therapeutic potential of aminoguanidine in mitigating fibrosis and senescence, offering prospective avenues for combating age-associated renal ailments.
Collapse
Affiliation(s)
- Ching-Chia Wang
- Department of Pediatrics, College of Medicine, National Taiwan University & Hospital, Taipei 100, Taiwan
| | - Ting-Yu Chang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Jin Peng
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ding-Cheng Chan
- Department of Geriatrics and Gerontology, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Departments of Integrated Diagnostics & Therapeutics and Internal Medicine, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Department of Pediatrics, College of Medicine, National Taiwan University & Hospital, Taipei 100, Taiwan; Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
2
|
Chen K, Wang D, Qian M, Weng M, Lu Z, Zhang K, Jin Y. Endothelial cell dysfunction and targeted therapeutic drugs in sepsis. Heliyon 2024; 10:e33340. [PMID: 39027563 PMCID: PMC11255673 DOI: 10.1016/j.heliyon.2024.e33340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by an abnormal host response to microbial infections. During its pathogenesis, vascular endothelial cells (ECs) play a pivotal role as essential components in maintaining microcirculatory homeostasis. This article aims to comprehensively review the multifaceted physiological functions of vascular ECs, elucidate the alterations in their functionality throughout the course of sepsis, and explore recent advancements in research concerning sepsis-related therapeutic drugs targeting ECs.
Collapse
Affiliation(s)
- Kunwei Chen
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongdong Wang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minyue Qian
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengcao Weng
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongteng Lu
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Jin
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Marefati N, Beheshti F, Anaeigoudari A, Alipour F, Shafieian R, Akbari F, Pirasteh M, Mahmoudabady M, Salmani H, Mawdodi S, Hosseini M. The effects of vitamin D on cardiovascular damage induced by lipopolysaccharides in rats. J Cardiovasc Thorac Res 2023; 15:106-115. [PMID: 37654818 PMCID: PMC10466464 DOI: 10.34172/jcvtr.2023.31719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/12/2023] [Indexed: 09/02/2023] Open
Abstract
Introduction Inflammation and oxidative stress are contributed to cardiovascular diseases. Vitamin D (Vit D) has antioxidant and anti-inflammatory properties. In the current research, the effect of Vit D on cardiac fibrosis and inflammation, and oxidative stress indicators in cardiovascular tissues was studied in lipopolysaccharides(LPS) injected rats. Methods Rats were distributed into 5 groups and were treated for 2 weeks. Control: received vehicle(saline supplemented with tween-80) instead of Vit D and saline instead of LPS, LPS: treated by 1 mg/kg of LPS and was given vehicle instead of Vit D, LPS-Vit D groups: received 3 doses of Vit D (100, 1000, and 10000 IU/kg) of Vit D in addition to LPS. Vit D was dissolved in saline supplemented with tween-80 (final concentration 0.1%) and LPS was dissolved in saline. The white blood cell (WBC) was counted. Oxidative stress markers were determined in serum, aorta, and heart. Cardiac tissue fibrosis was also estimated using Masson's trichrome staining method. Results WBC and malondialdehyde (MDA) were higher in the LPS group than the control group, whereas the thiol content, superoxide dismutase (SOD), and catalase (CAT) were lower in the LPS group than the control group (P<0.01 and P<0.001). Administration of Vit D decreased WBC (P<0.001) and MDA (P<0.05 and P<0.001) while enhanced thiol (dose 10000 IU/Kg) (P<0.001), SOD (dose 10000 IU/kg) (P<0.001), and CAT (P<0.05 and P<0.001) compared to the LPS group. All doses of Vit D also decreased cardiac fibrosis compared to the LPS group (P<0.001). Conclusion Vit D protected the cardiovascular against the detrimental effect of LPS. This cardiovascular protection can be attributed to the antioxidant and anti-inflammatory properties of Vit D.
Collapse
Affiliation(s)
- Narges Marefati
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fatemeh Alipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Shafieian
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Akbari
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Pirasteh
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahmoudabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Salmani
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Sara Mawdodi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Farazandeh M, Mahmoudabady M, Asghari AA, Niazmand S. Diabetic cardiomyopathy was attenuated by cinnamon treatment through the inhibition of fibro-inflammatory response and ventricular hypertrophy in diabetic rats. J Food Biochem 2022; 46:e14206. [PMID: 35474577 DOI: 10.1111/jfbc.14206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/13/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022]
Abstract
Diabetic cardiomyopathy (DCM) is a chronic complication of diabetes that emphasizes the urgency of developing new drug therapies. With an illustrious history in traditional medicine to improve diabetes, cinnamon has been shown to possess blood lipids lowering effects and antioxidative and anti-inflammatory properties. However, the extent to which it protects the diabetic heart has yet to be determined. Forty-eight rats were administered in the study and grouped as: control; diabetic; diabetic rats given 100, 200, or 400 mg/kg cinnamon extract, metformin (300 mg/kg), valsartan (30 mg/kg), or met/val (combination of both drugs), via gavage for six weeks. Fasting blood sugar (FBS) and markers of cardiac injury including creatine kinase-muscle/brain (CK-MB), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) were evaluated in blood samples. Malondialdehyde (MDA) levels, the total contents of thiol, superoxide dismutase (SOD), and catalase (CAT) activities were measured. Histopathology study and gene expression measurement of angiotensin II type 1 receptor (AT1), atrial natriuretic peptide (ANP), beta-myosin heavy chain (β-MHC), and brain natriuretic peptide (BNP) were done on cardiac tissue. FBS and cardiac enzyme indicators were reduced in all treated groups. A reduction in MDA level and enhancement in thiol content alongside with increase of SOD and CAT activities were observed in extract groups. The decrease of inflammation and fibrosis was obvious in treated groups, notably in the high-dose extract group. Furthermore, all treated diabetic groups showed a lowering trend in AT1, ANP, β-MHC, and BNP gene expression. Cinnamon extract, in addition to its hypoglycemic and antioxidant properties, can prevent diabetic heart damage by alleviating cardiac inflammation and fibrosis. PRACTICAL APPLICATIONS: This study found that cinnamon extract might protect diabetic heart damage by reducing inflammation and fibrosis in cardiac tissue, in addition to lowering blood glucose levels and increasing antioxidant activity. Our data imply that including cinnamon in diabetic participants' diets may help to reduce risk factors of cardiovascular diseases.
Collapse
Affiliation(s)
- Maryam Farazandeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahmoudabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Akbar Asghari
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Niazmand
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:961-972. [DOI: 10.1093/jpp/rgac019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022]
|
6
|
Tariq S, Koloko BL, Malik A, Rehman S, Ijaz B, Shahid AA. Tectona grandis leaf extract ameliorates hepatic fibrosis: Modulation of TGF- β /Smad signaling pathway and upregulating MMP3/TIMP1 ratio. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113938. [PMID: 33610708 DOI: 10.1016/j.jep.2021.113938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
ETHNOBOTANICAL RELEVANCE Tectona grandis L.f (or syn: Jatus grandis (L.f.) Kuntze Revis), from family Lamiaceae, also known as Teak, is widely recognized in ayurvedic system of medicine and confer curative potential against inflammation, liver disorders, biliousness, diabetes, bronchitis, leprosy and dysentery. Its leaves are rich source of edible food colorant and reported nontoxic for liver and various organs. AIM OF STUDY Hepatic injury progression to liver cirrhosis and cancer is a serious health issue across the world. Currently, anti-fibrotic therapeutic options are limited and expensive with no FDA approved direct anti-hepato-fibrotic drug validated in clinic. Thus, the aim of this study was to understand ameliorative effect of Tectona grandis L.f, leaves in early liver fibrosis. METHOD AND RESULTS C57BL/6 mice suffering from CCl4 induced liver injury, were orally administered at three different doses (50, 100 & 200 mg/kg) of Tectona grandis L.f, leaf extract, thrice a week, up to 4 and 8 weeks. Anti-fibrotic effect was evaluated through animal body/liver weight measurements, serological tests (AST, ALT, GSH, MDA and LDH assays), tissue hydroxyproline content, and histochemical analysis (H&E, Masson trichrome, Sirius red and αSMA localization). Moreover, transcriptional and post-transcriptional expression of fibrosis associated biomarkers and TGF-β/Smad cascade were analyzed. It was observed that 100 mg/kg dose optimally downregulated TGF-β1/Smad2 with upregulation of Smad7 and regulated αSMA, Col 1, PDGF, TIMP1 and MMP3 expression, post 8 weeks of treatment. In addition, MMP3/TIMP1 ratio was upregulated to 0.7, 2.5 and 1.7 fold at 50 mg/kg, 100 mg/kg & 200 mg/kg treatments respectively, in comparison to untreated liver fibrosis models. The extract contains gallic acid, caffeic acid, sinapinic acid and myricetin when analyzed through high performance liquid chromatography. CONCLUSION Tectona grandis L.f, leaves have potential to ameliorate liver fibrosis induced by CCl4 in mice via modulation of TGF-β1/Smad pathway and upregulated MMP3/TIMP1 ratio.
Collapse
Affiliation(s)
- Somayya Tariq
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | - Brice Landry Koloko
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | - Ayesha Malik
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | - Sidra Rehman
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan.
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | - Ahmad Ali Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|