1
|
Khatami M. Cancer; an induced disease of twentieth century! Induction of tolerance, increased entropy and 'Dark Energy': loss of biorhythms (Anabolism v. Catabolism). Clin Transl Med 2018; 7:20. [PMID: 29961900 PMCID: PMC6026585 DOI: 10.1186/s40169-018-0193-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
Maintenance of health involves a synchronized network of catabolic and anabolic signals among organs/tissues/cells that requires differential bioenergetics from mitochondria and glycolysis (biological laws or biorhythms). We defined biological circadian rhythms as Yin (tumoricidal) and Yang (tumorigenic) arms of acute inflammation (effective immunity) involving immune and non-immune systems. Role of pathogens in altering immunity and inducing diseases and cancer has been documented for over a century. However, in 1955s decision makers in cancer/medical establishment allowed public (current baby boomers) to consume million doses of virus-contaminated polio vaccines. The risk of cancer incidence and mortality sharply rose from 5% (rate of hereditary/genetic or innate disease) in 1900s, to its current scary status of 33% or 50% among women and men, respectively. Despite better hygiene, modern detection technologies and discovery of antibiotics, baby boomers and subsequent 2–3 generations are sicker than previous generations at same age. American health status ranks last among other developed nations while America invests highest amount of resources for healthcare. In this perspective we present evidence that cancer is an induced disease of twentieth century, facilitated by a great deception of cancer/medical establishment for huge corporate profits. Unlike popularized opinions that cancer is 100, 200 or 1000 diseases, we demonstrate that cancer is only one disease; the severe disturbances in biorhythms (differential bioenergetics) or loss of balance in Yin and Yang of effective immunity. Cancer projects that are promoted and funded by decision makers are reductionist approaches, wrong and unethical and resulted in loss of millions of precious lives and financial toxicity to society. Public vaccination with pathogen-specific vaccines (e.g., flu, hepatitis, HPV, meningitis, measles) weakens, not promotes, immunity. Results of irresponsible projects on cancer sciences or vaccines are increased population of drug-dependent sick society. Outcome failure rates of claimed ‘targeted’ drugs, ‘precision’ or ‘personalized’ medicine are 90% (± 5) for solid tumors. We demonstrate that aging, frequent exposures to environmental hazards, infections and pathogen-specific vaccines and ingredients are ‘antigen overload’ for immune system, skewing the Yin and Yang response profiles and leading to induction of ‘mild’, ‘moderate’ or ‘severe’ immune disorders. Induction of decoy or pattern recognition receptors (e.g., PRRs), such as IRAK-M or IL-1dRs (‘designer’ molecules) and associated genomic instability and over-expression of growth promoting factors (e.g., pyruvate kinases, mTOR and PI3Ks, histamine, PGE2, VEGF) could lead to immune tolerance, facilitating cancer cells to hijack anabolic machinery of immunity (Yang) for their increased growth requirements. Expression of constituent embryonic factors would negatively regulate differentiation of tumor cells through epithelial–mesenchymal-transition and create “dual negative feedback loop” that influence tissue metabolism under hypoxic conditions. It is further hypothesized that induction of tolerance creates ‘dark energy’ and increased entropy and temperature in cancer microenvironment allowing disorderly cancer proliferation and mitosis along with increased glucose metabolism via Crabtree and Pasteur Effects, under mitophagy and ribophagy, conditions that are toxic to host survival. Effective translational medicine into treatment requires systematic and logical studies of complex interactions of tumor cells with host environment that dictate clinical outcomes. Promoting effective immunity (biological circadian rhythms) are fundamental steps in correcting host differential bioenergetics and controlling cancer growth, preventing or delaying onset of diseases and maintaining public health. The author urges independent professionals and policy makers to take a closer look at cancer dilemma and stop the ‘scientific/medical ponzi schemes’ of a powerful group that control a drug-dependent sick society before all hopes for promoting public health evaporate.
Collapse
Affiliation(s)
- Mahin Khatami
- Inflammation, Aging and Cancer, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
2
|
Khatami M. Chronic Inflammation: Synergistic Interactions of Recruiting Macrophages (TAMs) and Eosinophils (Eos) with Host Mast Cells (MCs) and Tumorigenesis in CALTs. M-CSF, Suitable Biomarker for Cancer Diagnosis! Cancers (Basel) 2014; 6:297-322. [PMID: 24473090 PMCID: PMC3980605 DOI: 10.3390/cancers6010297] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/08/2014] [Accepted: 01/14/2014] [Indexed: 01/06/2023] Open
Abstract
Ongoing debates, misunderstandings and controversies on the role of inflammation in cancer have been extremely costly for taxpayers and cancer patients for over four decades. A reason for repeated failed clinical trials (90% ± 5 failure rates) is heavy investment on numerous genetic mutations (molecular false-flags) in the chaotic molecular landscape of site-specific cancers which are used for "targeted" therapies or "personalized" medicine. Recently, unresolved/chronic inflammation was defined as loss of balance between two tightly regulated and biologically opposing arms of acute inflammation ("Yin"-"Yang" or immune surveillance). Chronic inflammation could differentially erode architectural integrities in host immune-privileged or immune-responsive tissues as a common denominator in initiation and progression of nearly all age-associated neurodegenerative and autoimmune diseases and/or cancer. Analyses of data on our "accidental" discoveries in 1980s on models of acute and chronic inflammatory diseases in conjunctival-associated lymphoid tissues (CALTs) demonstrated at least three stages of interactions between resident (host) and recruited immune cells: (a), acute phase; activation of mast cells (MCs), IgE Abs, histamine and prostaglandin synthesis; (b), intermediate phase; down-regulation phenomenon, exhausted/degranulated MCs, heavy eosinophils (Eos) infiltrations into epithelia and goblet cells (GCs), tissue hypertrophy and neovascularization; and (c), chronic phase; induction of lymphoid hyperplasia, activated macrophages (Mfs), increased (irregular size) B and plasma cells, loss of integrity of lymphoid tissue capsular membrane, presence of histiocytes, follicular and germinal center formation, increased ratios of local IgG1/IgG2, epithelial thickening (growth) and/or thinning (necrosis) and angiogenesis. Results are suggestive of first evidence for direct association between inflammation and identifiable phases of immune dysfunction in the direction of tumorigenesis. Activated MFs (TAMs or M2) and Eos that are recruited by tissues (e.g., conjunctiva or perhaps lung airways) whose principal resident immune cells are MCs and lymphocytes are suggested to play crucial synergistic roles in enhancing growth promoting capacities of host toward tumorigenesis. Under oxidative stress, M-CSF may produce signals that are cumulative/synergistic with host mediators (e.g., low levels of histamine), facilitating tumor-directed expression of decoy receptors and immune suppressive factors (e.g., dTNFR, IL-5, IL-10, TGF-b, PGE2). M-CSF, possessing superior sensitivity and specificity, compared with conventional markers (e.g., CA-125, CA-19-9) is potentially a suitable biomarker for cancer diagnosis and technology development. Systematic monitoring of interactions between resident and recruited cells should provide key information not only about early events in loss of immune surveillance, but it would help making informed decisions for balancing the inherent tumoricidal (Yin) and tumorigenic (Yang) properties of immune system and effective preventive and therapeutic approaches and accurate risk assessment toward improvement of public health.
Collapse
Affiliation(s)
- Mahin Khatami
- Inflammation and Cancer Biology, National Cancer Institute (Ret), the National Institutes of Health, Bethesda, MD 20817, USA.
| |
Collapse
|
3
|
Chaturvedi S, Dell E, Siegel D, Brittingham G, Seetharam S. Development of a rapid streptavidin capture-based assay for the tyrosine phosphorylated CSF-1R in peripheral blood mononuclear cells. Int J Biol Sci 2013; 9:1099-107. [PMID: 24339731 PMCID: PMC3858583 DOI: 10.7150/ijbs.7268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/07/2013] [Indexed: 12/19/2022] Open
Abstract
A novel assay was developed to measure ratio of p-FMS (phospho FMS) to FMS using the Meso Scale Discovery(®) (MSD) technology and compared to the routinely used, IP-Western based approach. The existing IP-Western assay used lysed PBMCs (Peripheral Blood Mononuclear Cells) that were immunoprecipitated (IP) overnight, and assayed qualitatively by Western analysis. This procedure takes three days for completion. The novel IP-MSD method described in this paper employed immunoprecipitation of the samples for one hour, followed by assessment of the samples by a ruthenium labeled secondary antibody on a 96-well Streptavidin-coated MSD plate. This IP-MSD method was semi-quantitative, could be run in less than a day, required one-eighth the volume of sample, and compared well to the IP-Western method. In order to measure p-FMS/FMS, samples from healthy volunteers (HV) were first stimulated with CSF-1(Macrophage colony-stimulating factor) to initiate the changes in the phosphotyrosyl signaling complexes in FMS. The objective of the present work was to develop a high throughput assay that measured p-FMS/FMS semi-quantitatively, with minimal sample requirement, and most importantly compared well to the current IP-Western assay.
Collapse
Affiliation(s)
- Shalini Chaturvedi
- 1. Janssen Pharmaceutical Companies of Johnson & Johnson 1400 McKean Rd, Spring House, PA 19477, USA
| | | | | | | | | |
Collapse
|
4
|
Liao YH, Huang YT, Deng JY, Chen WS, Jee SH. Pulsed ultrasound promotes melanoblast migration through upregulation of macrophage colony-stimulating factor/focal adhesion kinase autocrine signaling and paracrine mechanisms. Pigment Cell Melanoma Res 2013; 26:654-65. [DOI: 10.1111/pcmr.12125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 05/30/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Yi-Hua Liao
- Department of Dermatology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei; Taiwan
| | - Yu-Ting Huang
- Graduate Institute of Clinical Medicine; College of Medicine; National Taiwan University; Taipei; Taiwan
| | - Jhu-Yun Deng
- Department of Dermatology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei; Taiwan
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei; Taiwan
| | | |
Collapse
|
5
|
Khatami M. Unresolved inflammation and cancer: loss of natural immune surveillance as the correct 'target' for therapy! Seeing the 'Elephant' in the light of logic. Cell Biochem Biophys 2012; 62:501-9. [PMID: 22109842 DOI: 10.1007/s12013-011-9319-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Mahin Khatami
- Section on Immunology, Inflammation, Aging and Cancer, Cell Biochemistry and Biophysics (CBB), Bethesda, MD, USA.
| |
Collapse
|
6
|
Khatami M. Unresolved inflammation: 'immune tsunami' or erosion of integrity in immune-privileged and immune-responsive tissues and acute and chronic inflammatory diseases or cancer. Expert Opin Biol Ther 2011; 11:1419-32. [PMID: 21663532 DOI: 10.1517/14712598.2011.592826] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Unresolved inflammation is loss of balance between two biologically opposing arms of acute inflammation, 'Yin' (tumoricidal) and 'Yang' (tumorigenic) processes that cause disruption of protective mechanisms of immune system. AREAS COVERED HYPOTHESIS Unresolved inflammation-induced exaggerated expression of apoptotic and/or wound healing mediators lead to fundamental erosion ('immune tsunami' or 'immune meltdown') of integrity in tissues that are naturally immune-responsive (immune surveillance); or immune-privileged (immune tolerance). 'Immune tsunami' refers to end results of acute or chronic immune dysfunction leading to inflammatory diseases or cancer. Acute inflammatory diseases including drug-induced cancer cachexia, would fit features of 'immune meltdown' that are otherwise described for end results of age-associated diseases. Pathogens induce rapid destruction of vascular integrity, gain access to tissues and cause excessive expression of apoptotic factors leading to multiple organ failure (MOF). Significant disruptions of immunological barriers and response shifts lead to chronic neurodegenerative and autoimmune diseases, tumor growth, malignancies and angiogenesis and loss of natural immune response balances. EXPERT OPINION Strategies to promote (stabilize) inherent properties of innate immune cells ('tumoricidal' versus 'tumorigenesis') that would influence polarization of adaptive immune (T or B) cells are key in reducing or preventing incidence of inflammatory and vascular diseases or cancer during aging process.
Collapse
Affiliation(s)
- Mahin Khatami
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20817, USA.
| |
Collapse
|
7
|
Method validation and application of protein biomarkers: basic similarities and differences from biotherapeutics. Bioanalysis 2011; 1:1461-74. [PMID: 21083095 DOI: 10.4155/bio.09.130] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Protein drug development and biomarkers share common bioanalytical technologies that are applied for different purposes. A fit-for-purpose approach should be used for biomarker assays at various stages of novel biomarker development and their application to drug development. Biomarker quantifications can be absolute or relative, depending upon the characteristics of the standard curve, which include the reference standard, substituted matrix and parallelism. Appropriate method-validation experiments should be carried out on sample collection, relative accuracy and precision, range finding, parallelism, selectivity, specificity and stability in order to meet the need for exploratory or advanced application that is specified for a study. The interaction of a biotherapeutic with the target ligand or inter-related biomarkers should be taken into consideration for method platform choice and validation. Direct adoption of commercial diagnostic kits can produce confounding data. Therefore, kit comparison, modification and appropriate validation experiments are often carried out to meet the specific purpose for drug development. Multiplex assays and physicochemical methods can complement the single-analyte ligand-binding assay for protein drugs and biomarkers.
Collapse
|
8
|
Abstract
INTRODUCTION Macrophages are key drivers of both the innate and adaptive immune systems. The cellular receptor for CSF-1 and IL-34, c-FMS, is a key component of the mechanism(s) by which macrophages are regulated. Several drug discovery programs aimed at uncovering inhibitors of the tyrosine kinase activity of this receptor are now entering clinical phase, and the prospect of readjusting the behavior of macrophages in a number of pathological situations, such as inflammation and cancer, is now on us. AREAS COVERED In this review, we evaluate the available patent literature on the topic of small molecule inhibitors of c-FMS. By way of background, we review the biology of c-FMS and make an analysis of the therapeutic opportunities that a small molecule c-FMS inhibitor might present. In order to place the pharmacology in perspective, we examine the literature concerning the role of the CSF-1-IL-34-c-FMS axis in macrophage function as well as cell types related to macrophages, such as the osteoclast, the dendritic cell and microglia, and provide a background to the understanding of the therapeutic opportunities for c-FMS inhibitors as well as potential obstacles that could limit their use. EXPERT OPINION The c-FMS receptor is a hot target for the development of novel regulators of macrophage behavior. Some nice candidates have been developed by a number of groups, and their recent entry into clinical phase testing means that we are now on the cusp of a fuller understanding of the role of these important regulators of the innate and adaptive immune systems in the development of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Christopher J Burns
- The Walter and Eliza Hall Institute of Medical Research, 4 Research Avenue, La Trobe R & D Park, Bundoora, VIC 3086, Australia
| | | |
Collapse
|
9
|
Reducing ion channel activity in a series of 4-heterocyclic arylamide FMS inhibitors. Bioorg Med Chem Lett 2010; 20:3925-9. [DOI: 10.1016/j.bmcl.2010.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/04/2010] [Accepted: 05/07/2010] [Indexed: 11/24/2022]
|
10
|
Khatami M. Inflammation, aging, and cancer: tumoricidal versus tumorigenesis of immunity: a common denominator mapping chronic diseases. Cell Biochem Biophys 2009; 55:55-79. [PMID: 19672563 DOI: 10.1007/s12013-009-9059-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 06/30/2009] [Indexed: 12/18/2022]
Abstract
Acute inflammation is a highly regulated defense mechanism of immune system possessing two well-balanced and biologically opposing arms termed apoptosis ('Yin') and wound healing ('Yang') processes. Unresolved or chronic inflammation (oxidative stress) is perhaps the loss of balance between 'Yin' and 'Yang' that would induce co-expression of exaggerated or 'mismatched' apoptotic and wound healing factors in the microenvironment of tissues ('immune meltdown'). Unresolved inflammation could initiate the genesis of many age-associated chronic illnesses such as autoimmune and neurodegenerative diseases or tumors/cancers. In this perspective 'birds' eye' view of major interrelated co-morbidity risk factors that participate in biological shifts of growth-arresting ('tumoricidal') or growth-promoting ('tumorigenic') properties of immune cells and the genesis of chronic inflammatory diseases and cancer will be discussed. Persistent inflammation is perhaps a common denominator in the genesis of nearly all age-associated health problems or cancer. Future challenging opportunities for diagnosis, prevention, and/or therapy of chronic illnesses will require an integrated understanding and identification of developmental phases of inflammation-induced immune dysfunction and age-associated hormonal and physiological readjustments of organ systems. Designing suitable cohort studies to establish the oxido-redox status of adults may prove to be an effective strategy in assessing individual's health toward developing personal medicine for healthy aging.
Collapse
Affiliation(s)
- Mahin Khatami
- The National Cancer Institute, The National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Khatami M. 'Yin and Yang' in inflammation: duality in innate immune cell function and tumorigenesis. Expert Opin Biol Ther 2008; 8:1461-72. [PMID: 18774915 DOI: 10.1517/14712598.8.10.1461] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The two stages of the acute inflammatory process are apoptosis ('Yin') and wound healing or resolution ('Yang'). Inflammation defends the host against unwanted elements. OBJECTIVE/METHODS To present a discussion of pleiotropic roles of innate immune cells possessing 'tumoricidal' and/or 'tumorigenic' properties in inflammation-induced dysfunction of the immune system and the genesis of chronic inflammatory diseases, hyperplasia, precancer/neoplasia or tumor and angiogenesis. RESULTS/CONCLUSIONS Loss of maintenance of the balance between apoptosis and wound healing and co-existence of death and growth factors in tissues could create 'immunological chaos' with accumulation of 'immune response mismatches'. Unresolved inflammation plays a role in the genesis of chronic inflammatory and autoimmune diseases and cancer. Identification of accumulated 'mismatched' death and growth factors during the developmental phases of immune dysfunction in target tissues or cancer microenvironment presents challenges and opportunities for future studies on diagnosis, prevention and therapy of these diseases.
Collapse
Affiliation(s)
- Mahin Khatami
- The National Cancer Institute, The National Institutes of Health, Technology Program Development, Office of Technology and Industrial Relations, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Douglass TG, Driggers L, Zhang JG, Hoa N, Delgado C, Williams CC, Dan Q, Sanchez R, Jeffes EWB, Wepsic HT, Myers MP, Koths K, Jadus MR. Macrophage colony stimulating factor: not just for macrophages anymore! A gateway into complex biologies. Int Immunopharmacol 2008; 8:1354-76. [PMID: 18687298 DOI: 10.1016/j.intimp.2008.04.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Accepted: 04/21/2008] [Indexed: 12/21/2022]
Abstract
Macrophage colony stimulating factor (M-CSF, also called colony stimulating factor-1) has traditionally been viewed as a growth/differentiation factor for monocytes, macrophages, and some female-specific tumors. As a result of alternative mRNA splicing and post-translational processing, several forms of M-CSF protein are produced: a secreted glycoprotein, a longer secreted form containing proteoglycan, and a short membrane-bound isoform. These different forms of M-CSF all initiate cell signaling in cells bearing the M-CSF receptor, called c-fms. Here we review the biology of M-CSF, which has important roles in bone physiology, the intestinal tract, cancer metastases to the bone, macrophage-mediated tumor cell killing and tumor immunity. Although this review concentrates mostly on the membrane form of human M-CSF (mM-CSF), the biology of the soluble forms and the M-CSF receptor will also be discussed for comparative purposes. The mechanisms of the biological effects of the membrane-bound M-CSF reveal that this cytokine is unexpectedly involved in many complex molecular events. Recent experiments suggest that a tumor vaccine based on membrane-bound M-CSF-transduced tumor cells, combined with anti-angiogenic therapy, should be evaluated further for use in clinical trials.
Collapse
Affiliation(s)
- Thomas G Douglass
- Biology Department, California State University Long Beach, 1250 Bellflower Blvd, Long Beach CA 90840, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|