1
|
Fantini J, Azzaz F, Bennaï R, Yahi N, Chahinian H. Cholesterol-Dependent Serotonin Insertion Controlled by Gangliosides in Model Lipid Membranes. Int J Mol Sci 2024; 25:10194. [PMID: 39337677 PMCID: PMC11432689 DOI: 10.3390/ijms251810194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Serotonin is distinct among synaptic neurotransmitters because it is amphipathic and released from synaptic vesicles at concentrations superior to its water solubility limit (270 mM in synaptic vesicles for a solubility limit of 110 mM). Hence, serotonin is mostly aggregated in the synaptic cleft, due to extensive aromatic stacking. This important characteristic has received scant attention, as most representations of the serotonergic synapse take as warranted that serotonin molecules are present as monomers after synaptic vesicle exocytosis. Using a combination of in silico and physicochemical approaches and a new experimental device mimicking synaptic conditions, we show that serotonin aggregates are efficiently dissolved by gangliosides (especially GM1) present in postsynaptic membranes. This initial interaction, driven by electrostatic forces, attracts serotonin from insoluble aggregates and resolves micelles into monomers. Serotonin also interacts with cholesterol via a set of CH-π and van der Waals interactions. Thus, gangliosides and cholesterol act together as a functional serotonin-collecting funnel on brain cell membranes. Based on this unique mode of interaction with postsynaptic membranes, we propose a new model of serotonergic transmission that takes into account the post-exocytosis solubilizing effect of gangliosides and cholesterol on serotonin aggregates.
Collapse
Affiliation(s)
| | | | | | - Nouara Yahi
- Department of Biology, Faculty of Medicine, University of Aix-Marseille, INSERM UA16, 13015 Marseille, France; (J.F.); (F.A.); (R.B.); (H.C.)
| | | |
Collapse
|
2
|
Fanani ML, Ambroggio EE. Phospholipases and Membrane Curvature: What Is Happening at the Surface? MEMBRANES 2023; 13:190. [PMID: 36837693 PMCID: PMC9965983 DOI: 10.3390/membranes13020190] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
In this revision work, we emphasize the close relationship between the action of phospholipases and the modulation of membrane curvature and curvature stress resulting from this activity. The alteration of the tridimensional structure of membranes upon the action of phospholipases is analyzed based on studies on model lipid membranes. The transient unbalance of both compositional and physical membrane properties between the hemilayers upon phospholipase activity lead to curvature tension and the catalysis of several membrane-related processes. Several proteins' membrane-bound and soluble forms are susceptible to regulation by the curvature stress induced by phospholipase action, which has important consequences in cell signaling. Additionally, the modulation of membrane fusion by phospholipase products regulates membrane dynamics in several cellular scenarios. We commented on vesicle fusion in the Golgi-endoplasmic system, synaptic vesicle fusion to the plasma membrane, viral membrane fusion to host cell plasma membrane and gametes membrane fusion upon acrosomal reaction. Furthermore, we explored the modulation of membrane fusion by the asymmetric adsorption of amphiphilic drugs. A deep understanding of the relevance of lipid membrane structure, particularly membrane curvature and curvature stress, on different cellular events leads to the challenge of its regulation, which may become a powerful tool for pharmacological therapy.
Collapse
Affiliation(s)
- María Laura Fanani
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Ernesto Esteban Ambroggio
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| |
Collapse
|
3
|
Tanaka K, Joshi D, Timalsina S, Schwartz MA. Early events in endothelial flow sensing. Cytoskeleton (Hoboken) 2021; 78:217-231. [PMID: 33543538 DOI: 10.1002/cm.21652] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/15/2022]
Abstract
Responses of vascular and lymphatic endothelial cells (ECs) to fluid shear stress (FSS) from blood or lymphatic fluid flow govern the development, physiology, and diseases of these structures. Extensive research has characterized the signaling, gene expression and cytoskeletal pathways that mediate effects on EC phenotype and vascular morphogenesis. But the primary mechanisms by which ECs transduce the weak forces from flow into biochemical signals are less well understood. This review covers recent advances in our understanding of the immediate mechanisms of FSS mechanotransduction, integrating results from different disciplines, addressing their roles in development, physiology and disease, and suggesting important questions for future work.
Collapse
Affiliation(s)
- Keiichiro Tanaka
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Divyesh Joshi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Sushma Timalsina
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA.,Department of Cell Biology, Yale University, New Haven, Connecticut, USA.,Department of Biomedical engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Zulueta Díaz YDLM, Ambroggio EE, Fanani ML. Miltefosine inhibits the membrane remodeling caused by phospholipase action by changing membrane physical properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183407. [DOI: 10.1016/j.bbamem.2020.183407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 01/04/2023]
|
5
|
Fanani ML, Busto JV, Sot J, Abad JL, Fabrías G, Saiz L, Vilar JMG, Goñi FM, Maggio B, Alonso A. Clearly Detectable, Kinetically Restricted Solid-Solid Phase Transition in cis-Ceramide Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11749-11758. [PMID: 30183303 DOI: 10.1021/acs.langmuir.8b02198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sphingosine [(2 S,3 R,4 E)-2-amino-4-octadecene-1,3-diol] is the most common sphingoid base in mammals. Ceramides are N-acyl sphingosines. Numerous small variations on this canonical structure are known, including the 1-deoxy, the 4,5-dihydro, and many others. However, whenever there is a Δ4 double bond, it adopts the trans (or E) configuration. We synthesized a ceramide containing 4 Z-sphingosine and palmitic acid ( cis-pCer) and studied its behavior in the form of monolayers extended on an air-water interface. cis-pCer acted very differently from the trans isomer in that, upon lateral compression of the monolayer, a solid-solid transition was clearly observed at a mean molecular area ≤44 Å2·molecule-1, whose characteristics depended on the rate of compression. The solid-solid transition, as well as states of domain coexistence, could be imaged by atomic force microscopy and by Brewster-angle microscopy. Atomistic molecular dynamics simulations provided results compatible with the experimentally observed differences between the cis and trans isomers. The data can help in the exploration of other solid-solid transitions in lipids, both in vitro and in vivo, that have gone up to now undetected because of their less obvious change in surface properties along the transition, as compared to cis-pCer.
Collapse
Affiliation(s)
| | - Jon V Busto
- Instituto Biofisika (CSIC, UPV/EHU) , B. Sarriena s/n , 48940 Leioa , Spain
- Departamento de Bioquímica , Universidad del País Vasco , B. Sarriena s/n , 48940 Leioa , Spain
| | - Jesús Sot
- Instituto Biofisika (CSIC, UPV/EHU) , B. Sarriena s/n , 48940 Leioa , Spain
| | - José L Abad
- Research Unit on Bioactive Molecules (RUBAM), Departamento de Química Biológica , Instituto de Química Avanzada de Catalunya (IQAC-CSIC) , Barcelona 08034 , Spain
| | - Gemma Fabrías
- Research Unit on Bioactive Molecules (RUBAM), Departamento de Química Biológica , Instituto de Química Avanzada de Catalunya (IQAC-CSIC) , Barcelona 08034 , Spain
- Centro de Investigación Biomédica en Red (CIBERehd) , 28029 Madrid , Spain
| | - Leonor Saiz
- Modeling of Biological Networks and Systems Therapeutics Laboratory, Department of Biomedical Engineering , University of California , 451 East Health Sciences Drive , Davis , California 95616 , United States
- Institute for Medical Engineering & Science , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Jose M G Vilar
- Instituto Biofisika (CSIC, UPV/EHU) , B. Sarriena s/n , 48940 Leioa , Spain
- Departamento de Bioquímica , Universidad del País Vasco , B. Sarriena s/n , 48940 Leioa , Spain
- IKERBASQUE, Basque Foundation for Science , 48011 Bilbao , Spain
| | - Félix M Goñi
- Instituto Biofisika (CSIC, UPV/EHU) , B. Sarriena s/n , 48940 Leioa , Spain
- Departamento de Bioquímica , Universidad del País Vasco , B. Sarriena s/n , 48940 Leioa , Spain
| | | | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU) , B. Sarriena s/n , 48940 Leioa , Spain
- Departamento de Bioquímica , Universidad del País Vasco , B. Sarriena s/n , 48940 Leioa , Spain
| |
Collapse
|
6
|
Biophysical and biochemical strategies to understand membrane binding and pore formation by sticholysins, pore-forming proteins from a sea anemone. Biophys Rev 2017; 9:529-544. [PMID: 28853034 DOI: 10.1007/s12551-017-0316-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022] Open
Abstract
Actinoporins constitute a unique class of pore-forming toxins found in sea anemones that are able to bind and oligomerize in membranes, leading to cell swelling, impairment of ionic gradients and, eventually, to cell death. In this review we summarize the knowledge generated from the combination of biochemical and biophysical approaches to the study of sticholysins I and II (Sts, StI/II), two actinoporins largely characterized by the Center of Protein Studies at the University of Havana during the last 20 years. These approaches include strategies for understanding the toxin structure-function relationship, the protein-membrane association process leading to pore formation and the interaction of toxin with cells. The rational combination of experimental and theoretical tools have allowed unraveling, at least partially, of the complex mechanisms involved in toxin-membrane interaction and of the molecular pathways triggered upon this interaction. The study of actinoporins is important not only to gain an understanding of their biological roles in anemone venom but also to investigate basic molecular mechanisms of protein insertion into membranes, protein-lipid interactions and the modulation of protein conformation by lipid binding. A deeper knowledge of the basic molecular mechanisms involved in Sts-cell interaction, as described in this review, will support the current investigations conducted by our group which focus on the design of immunotoxins against tumor cells and antigen-releasing systems to cell cytosol as Sts-based vaccine platforms.
Collapse
|
7
|
The many faces (and phases) of ceramide and sphingomyelin II - binary mixtures. Biophys Rev 2017; 9:601-616. [PMID: 28823080 DOI: 10.1007/s12551-017-0298-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/27/2017] [Indexed: 12/31/2022] Open
Abstract
A rather widespread idea on the functional importance of sphingolipids in cell membranes refers to the occurrence of ordered domains enriched in sphingomyelin and ceramide that are largely assumed to exist irrespective of the type of N-acyl chain in the sphingolipid. Ceramides and sphingomyelins are the simplest kind of two-chained sphingolipids and show a variety of species, depending on the fatty acyl chain length, hydroxylation, and unsaturation. Abundant evidences have shown that variations of the N-acyl chain length in ceramides and sphingomyelins markedly affect their phase state, interfacial elasticity, surface topography, electrostatics, and miscibility, and that even the usually conceived "condensed" sphingolipids and many of their mixtures may exhibit liquid-like expanded states. Their lateral miscibility properties are subtlety regulated by those chemical differences. Even between ceramides with different acyl chain length, their partial miscibility is responsible for a rich two-dimensional structural variety that impacts on the membrane properties at the mesoscale level. In this review, we will discuss the miscibility properties of ceramide, sphingomyelin, and glycosphingolipids that differ in their N-acyl or oligosaccharide chains. This work is a second part that accompanies a previous overview of the properties of membranes formed by pure ceramides or sphingomyelins, which is also included in this Special Issue.
Collapse
|
8
|
Fanani ML, Maggio B. The many faces (and phases) of ceramide and sphingomyelin I - single lipids. Biophys Rev 2017; 9:589-600. [PMID: 28815463 DOI: 10.1007/s12551-017-0297-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022] Open
Abstract
Ceramides, the simplest kind of two-chained sphingolipids, contain a single hydroxyl group in position 1 of the sphingoid base. Sphingomyelins further contain a phosphocholine group at the OH of position 1 of ceramide. Ceramides and sphingomyelins show a variety of species depending on the fatty acyl chain length, hydroxylation, and unsaturation. Because of the relatively high transition temperature of sphingomyelin compared to lecithin and, particularly, of ceramides with 16:0-18:0 saturated chains, a widespread idea on their functional importance refers to formation of rather solid domains enriched in sphingomyelin and ceramide. Frequently, and especially in the cell biology field, these are generally (and erroneously) assumed to occur irrespective on the type of N-acyl chain in these lipids. This is because most studies indicating such condensed ordered domains employed sphingolipids with acyl chains with 16 carbons while scarce attention has been focused on the influence of the N-acyl chain on their surface properties. However, abundant evidence has shown that variations of the N-acyl chain length in ceramides and sphingomyelins markedly affect their phase state, interfacial elasticity, surface topography, electrostatics and miscibility and that, even the usually conceived "condensed" sphingolipids and many of their mixtures, may exhibit liquid-like expanded states. This review is a summarized overview of our work and of related others on some facts regarding membranes composed of single molecular species of ceramide and sphingomyelin. A second part is dedicated to discuss the miscibility properties between species of sphingolipids that differ in N-acyl and oligosaccharide chains.
Collapse
Affiliation(s)
- María Laura Fanani
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - Bruno Maggio
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
9
|
Reorganization of Lipid Diffusion by Myelin Basic Protein as Revealed by STED Nanoscopy. Biophys J 2017; 110:2441-2450. [PMID: 27276262 PMCID: PMC4906378 DOI: 10.1016/j.bpj.2016.04.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/30/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022] Open
Abstract
Myelin is a multilayered membrane that ensheathes axonal fibers in the vertebrate nervous system, allowing fast propagation of nerve action potentials. It contains densely packed lipids, lacks an actin-based cytocortex, and requires myelin basic protein (MBP) as its major structural component. This protein is the basic constituent of the proteinaceous meshwork that is localized between adjacent cytoplasmic membranes of the myelin sheath. Yet, it is not clear how MBP influences the organization and dynamics of the lipid constituents of myelin. Here, we used optical stimulated emission depletion super-resolution microscopy in combination with fluorescence correlation spectroscopy to assess the characteristics of diffusion of different fluorescent lipid analogs in myelin membrane sheets of cultured oligodendrocytes and in micrometer-sized domains that were induced by MBP in live epithelial PtK2 cells. Lipid diffusion was significantly faster and less anomalous both in oligodendrocytes and inside the MBP-rich domains of PtK2 cells compared with undisturbed live PtK2 cells. Our data show that MBP reorganizes lipid diffusion, possibly by preventing the buildup of an actin-based cytocortex and by preventing most membrane proteins from entering the myelin sheath region. Yet, in contrast to myelin sheets in oligodendrocytes, the MBP-induced domains in epithelial PtK2 cells demonstrate no change in lipid order, indicating that segregation of long-chain lipids into myelin sheets is a process specific to oligodendrocytes.
Collapse
|
10
|
Sizes of lipid domains: What do we know from artificial lipid membranes? What are the possible shared features with membrane rafts in cells? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:789-802. [DOI: 10.1016/j.bbamem.2017.01.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/21/2017] [Accepted: 01/26/2017] [Indexed: 12/13/2022]
|
11
|
Dupuy F, Fernández Bordín S, Maggio B, Oliveira R. Hexagonal phase with ordered acyl chains formed by a short chain asymmetric ceramide. Colloids Surf B Biointerfaces 2017; 149:89-96. [DOI: 10.1016/j.colsurfb.2016.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/11/2016] [Accepted: 10/05/2016] [Indexed: 01/03/2023]
|
12
|
Heredia V, Maggio B, Beltramo DM, Dupuy FG. Interfacial stabilization of the antitumoral drug Paclitaxel in monolayers of GM1 and GD1a gangliosides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2163-71. [DOI: 10.1016/j.bbamem.2015.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 11/28/2022]
|
13
|
Garidel P, Kaconis Y, Heinbockel L, Wulf M, Gerber S, Munk A, Vill V, Brandenburg K. Self-Organisation, Thermotropic and Lyotropic Properties of Glycolipids Related to their Biological Implications. Open Biochem J 2015; 9:49-72. [PMID: 26464591 PMCID: PMC4598379 DOI: 10.2174/1874091x01509010049] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/27/2014] [Accepted: 03/18/2014] [Indexed: 11/22/2022] Open
Abstract
Glycolipids are amphiphilic molecules which bear an oligo- or polysaccharide as hydrophilic head group and hydrocarbon chains in varying numbers and lengths as hydrophobic part. They play an important role in life science as well as in material science. Their biological and physiological functions are quite diverse, ranging from mediators of cell-cell recognition processes, constituents of membrane domains or as membrane-forming units. Glycolipids form an exceptional class of liquid-crystal mesophases due to the fact that their self-organisation obeys more complex rules as compared to classical monophilic liquid-crystals. Like other amphiphiles, the supra-molecular structures formed by glycolipids are driven by their chemical structure; however, the details of this process are still hardly understood. Based on the synthesis of specific glycolipids with a clearly defined chemical structure, e.g., type and length of the sugar head group, acyl chain linkage, substitution pattern, hydrocarbon chain lengths and saturation, combined with a profound physico-chemical characterisation of the formed mesophases, the principles of the organisation in different aggregate structures of the glycolipids can be obtained. The importance of the observed and formed phases and their properties are discussed with respect to their biological and physiological relevance. The presented data describe briefly the strategies used for the synthesis of the used glycolipids. The main focus, however, lies on the thermotropic as well as lyotropic characterisation of the self-organised structures and formed phases based on physico-chemical and biophysical methods linked to their potential biological implications and relevance.
Collapse
Affiliation(s)
- Patrick Garidel
- Physikalische Chemie, Martin-Luther-Universität Halle/Wittenberg, Mühlpforte 1, D-06108 Halle/Saale, Germany
| | - Yani Kaconis
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Parkallee 1-40, D-23845 Borstel, Germany
| | - Lena Heinbockel
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Parkallee 1-40, D-23845 Borstel, Germany
| | - Matthias Wulf
- Institut für Organische Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
| | - Sven Gerber
- Institut für Organische Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
| | - Ariane Munk
- Institut für Organische Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
| | - Volkmar Vill
- Institut für Organische Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
| | - Klaus Brandenburg
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Parkallee 1-40, D-23845 Borstel, Germany
| |
Collapse
|
14
|
Mahadeo M, Furber KL, Lam S, Coorssen JR, Prenner EJ. Secretory vesicle cholesterol: Correlating lipid domain organization and Ca2+ triggered fusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1165-74. [DOI: 10.1016/j.bbamem.2015.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/02/2015] [Accepted: 02/07/2015] [Indexed: 12/13/2022]
|
15
|
Dupuy FG, Maggio B. N-Acyl Chain in Ceramide and Sphingomyelin Determines Their Mixing Behavior, Phase State, and Surface Topography in Langmuir Films. J Phys Chem B 2014; 118:7475-7487. [PMID: 24949924 DOI: 10.1021/jp501686q] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sphingolipids are membrane lipids composed by a long chain aminediol base, usually sphingosine, with a N-linked fatty acyl chain whose quality depends on the membrane type. The effect of length and unsaturation of the N-acyl chain on the mixing behavior of different sphingolipids has scarcely been studied, and in this work this issue is addressed employing Langmuir monolayers at the air-water interface, in order to assess the surface mixing in binary mixtures of different species of sphingomyelins and ceramides. The dependence on the monolayer composition of the mean molecular area, perpendicular dipole moment, domain segregation, and surface topography, as well as the film elasticity and optical thickness were studied. The results indicate that composition-dependent favorable interactions among sphingomyelin and ceramide occur as a consequence of complementary lateral packing and increased acyl chain ordering; the phase state of the components appears as a major factor determining miscibility among sphingomyelins and ceramides even in cases where the lipids have a considerable hydrocarbon chain length mismatch.
Collapse
Affiliation(s)
- Fernando G Dupuy
- Centro de Investigaciones en Química Biológica de Córdoba CIQUIBIC-CONICET/UNC, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba . Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Bruno Maggio
- Centro de Investigaciones en Química Biológica de Córdoba CIQUIBIC-CONICET/UNC, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba . Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| |
Collapse
|
16
|
Hales CG. The origins of the brain's endogenous electromagnetic field and its relationship to provision of consciousness. J Integr Neurosci 2014; 13:313-61. [DOI: 10.1142/s0219635214400056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Wilke N. Lipid Monolayers at the Air–Water Interface. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2014. [DOI: 10.1016/b978-0-12-418698-9.00002-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Pomicter AD, Deloyht JM, Hackett AR, Purdie N, Sato-Bigbee C, Henderson SC, Dupree JL. Nfasc155H and MAG are specifically susceptible to detergent extraction in the absence of the myelin sphingolipid sulfatide. Neurochem Res 2013; 38:2490-502. [PMID: 24081651 DOI: 10.1007/s11064-013-1162-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/17/2013] [Accepted: 09/20/2013] [Indexed: 12/13/2022]
Abstract
Mice incapable of synthesizing the myelin lipid sulfatide form paranodes that deteriorate with age. Similar instability also occurs in mice that lack contactin, contactin-associated protein or neurofascin155 (Nfasc155), the proteins that cluster in the paranode and form the junctional complex that mediates myelin-axon adhesion. In contrast to these proteins, sulfatide has not been shown to be enriched in the paranode nor has a sulfatide paranodal binding partner been identified; thus, it remains unclear how the absence of sulfatide results in compromised paranode integrity. Using an in situ extraction procedure, it has been reported that the absence of the myelin sphingolipids, galactocerebroside and sulfatide, increased the susceptibility of Nfasc155 to detergent extraction. Here, employing a similar approach, we demonstrate that in the presence of galactocerebroside but in the absence of sulfatide Nfasc155 is susceptible to detergent extraction. Furthermore, we use this in situ approach to show that stable association of myelin-associated glycoprotein (MAG) with the myelin membrane is sulfatide dependent while the membrane associations of myelin/oligodendrocyte glycoprotein, myelin basic protein and cyclic nucleotide phosphodiesterase are sulfatide independent. These findings indicate that myelin proteins maintain their membrane associations by different mechanisms. Moreover, the myelin proteins that cluster in the paranode and require sulfatide mediate myelin-axon adhesion. Additionally, the apparent dependency on sulfatide for maintaining Nfasc155 and MAG associations is intriguing since the fatty acid composition of sulfatide is altered and paranodal ultrastructure is compromised in multiple sclerosis. Thus, our findings present a potential link between sulfatide perturbation and myelin deterioration in multiple sclerosis.
Collapse
Affiliation(s)
- A D Pomicter
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, VA, 23298, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Hatta E, Nishimura T. Distribution of cooperative unit size of amphiphilic molecules in the phase coexistence region in Langmuir monolayers. J Colloid Interface Sci 2013; 391:111-5. [PMID: 23110870 DOI: 10.1016/j.jcis.2012.09.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 11/29/2022]
Abstract
The dependence of the size of the cooperative unit (C.U.) of amphiphilic molecules on surface pressure (π) in the liquid expanded (LE)-liquid condensed (LC) phase coexistence region of Langmuir monolayers has been formulated and calculated using measured isotherm data. The C.U. size changes largely depending on the surface pressure in the coexistence region: these submicroscopic molecular aggregates are not static objects, but dynamic ones characterized by large fluctuations in size. It has been found that the C.U. size distribution can be a natural consequence of the significant change of monolayer compressibility, which reflects large molecular area density fluctuations, in the coexistence region.
Collapse
Affiliation(s)
- E Hatta
- Nanoelectronics Laboratory, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan.
| | | |
Collapse
|
20
|
Mahato M, Pal P, Tah B, Talapatra G. Hemoglobin–phospholipid interaction and biocomposite formation at air/water interface. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2012.08.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
21
|
Vega Mercado F, Maggio B, Wilke N. Modulation of the domain topography of biphasic monolayers of stearic acid and dimyristoyl phosphatidylcholine. Chem Phys Lipids 2012; 165:232-7. [DOI: 10.1016/j.chemphyslip.2012.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/05/2012] [Accepted: 01/09/2012] [Indexed: 11/27/2022]
|
22
|
Silva LC, Ben David O, Pewzner-Jung Y, Laviad EL, Stiban J, Bandyopadhyay S, Merrill AH, Prieto M, Futerman AH. Ablation of ceramide synthase 2 strongly affects biophysical properties of membranes. J Lipid Res 2012; 53:430-436. [PMID: 22231783 DOI: 10.1194/jlr.m022715] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Little is known about the effects of altering sphingolipid (SL) acyl chain structure and composition on the biophysical properties of biological membranes. We explored the biophysical consequences of depleting very long acyl chain (VLC) SLs in membranes prepared from lipid fractions isolated from a ceramide synthase 2 (CerS2)-null mouse, which is unable to synthesize C22-C24 ceramides. We demonstrate that ablation of CerS2 has different effects on liver and brain, causing a significant alteration in the fluidity of the membrane and affecting the type and/or extent of the phases present in the membrane. These changes are a consequence of the depletion of VLC and unsaturated SLs, which occurs to a different extent in liver and brain. In addition, ablation of CerS2 causes changes in intrinsic membrane curvature, leading to strong morphological alterations that promote vesicle adhesion, membrane fusion, and tubule formation. Together, these results show that depletion of VLC-SLs strongly affects membrane biophysical properties, which may compromise cellular processes that critically depend on membrane structure, such as trafficking and sorting.
Collapse
Affiliation(s)
- Liana C Silva
- iMed.UL, Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel; CQFM & IN, Instituto Superior Técnico, 1049-001 Lisboa, Portugal.
| | - Oshrit Ben David
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Pewzner-Jung
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elad L Laviad
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Johnny Stiban
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sibali Bandyopadhyay
- School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0230
| | - Alfred H Merrill
- School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0230
| | - Manuel Prieto
- CQFM & IN, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
23
|
Gröger T, Nathoo S, Ku T, Sikora C, Turner RJ, Prenner EJ. Real-time imaging of lipid domains and distinct coexisting membrane protein clusters. Chem Phys Lipids 2011; 165:216-24. [PMID: 22227110 DOI: 10.1016/j.chemphyslip.2011.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 12/15/2011] [Accepted: 12/19/2011] [Indexed: 12/20/2022]
Abstract
A detailed understanding of biomembrane architecture is still a challenging task. Many in vitro studies have shown lipid domains but much less information is known about the lateral organization of membrane proteins because their hydrophobic nature limits the use of many experimental methods. We examined lipid domain formation in biomimetic Escherichia coli membranes composed of phosphatidylethanolamine and phosphatidylglycerol in the absence and presence of 1% and 5% (mol/mol) membrane multidrug resistance protein, EmrE. Monolayer isotherms demonstrated protein insertion into the lipid monolayer. Subsequently, Brewster angle microscopy was applied to image domains in lipid matrices and lipid-protein mixtures. The images showed a concentration dependent impact of the protein on lipid domain size and shape and more interestingly distinct coexisting protein clusters. Whereas lipid domains varied in size (14-47μm), protein clusters exhibited a narrow size distribution (2.6-4.8μm) suggesting a non-random process of cluster formation. A 3-D display clearly indicates that these proteins clusters protrude from the membrane plane. These data demonstrate distinct co-existing lipid domains and membrane protein clusters as the monofilm is being compressed and illustrate the significant mutual impact of lipid-protein interactions on lateral membrane architecture.
Collapse
Affiliation(s)
- Thomas Gröger
- Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherbeg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Mercado FV, Maggio B, Wilke N. Phase diagram of mixed monolayers of stearic acid and dimyristoylphosphatidylcholine. Effect of the acid ionization. Chem Phys Lipids 2011; 164:386-92. [PMID: 21635875 DOI: 10.1016/j.chemphyslip.2011.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/09/2011] [Accepted: 05/16/2011] [Indexed: 11/19/2022]
Abstract
The aim of this work is to study the phase diagram of mixed monolayers composed of dimyristoylphosphatidylcholine (DMPC) and stearic acid (SA) at different ionic strength and bulk pH of the aqueous subphase. In this way, the effect of ionization of SA on the interaction and thus on phase separation with the DMPC matrix can be analyzed. To this purpose, we first determined the ionization state of pure SA monolayers as a function of the bulk subphase pH. The SA monolayers are nearly fully ionized at pH 10 and essentially neutral at pH 4 and the mixture of DMPC and SA was studied at those two pHs. We found that the DMPC-enriched phase admits more SA if the SA monolayer is in a liquid-expanded state, which is highly related to the acid ionization state, and thus to the bulk pH and ionic strength. At pH 4 the molecules hardly mix while at pH 10 the mixed monolayer with DMPC can admit between 30 and 100% of SA (depending on the lateral pressure) before phase separation is established. The addition of calcium ions to the subphase has a condensing effect on SA monolayers at all pHs and the solubility of SA in the DMPC matrix does not depend on the bulk pH in these conditions. The observed phase diagrams are independent on the manner in which the state of the mixed film is reached and may thus be considered states of apparent equilibrium.
Collapse
Affiliation(s)
- Franco Vega Mercado
- Centro de Investigaciones en Química Biológical de Córdoba (CIQUIBIC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | |
Collapse
|
25
|
Dupuy F, Fanani ML, Maggio B. Ceramide N-acyl chain length: a determinant of bidimensional transitions, condensed domain morphology, and interfacial thickness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:3783-3791. [PMID: 21355583 DOI: 10.1021/la105011x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Several lipids of biological interest are able to form monomolecular surfaces with a rich variety of thickness and lateral topography that can be precisely controlled by defined variations of the film composition. Ceramide is one of the simplest sphingolipids, consisting of a sphingosine base N-linked to a fatty acid, and is a membrane mediator for cell-signaling events. In this work, films of ceramides N-acylated with the saturated fatty acids C10, C12, C14, and C16 were studied at the air-aqueous interface. The dipole moment contribution (from surface potential measurements) and the surface topography and thickness (as revealed by Brewster angle microscopy) were measured simultaneously with the surface pressure at different molecular areas. Several surface features were observed depending on the asymmetry between the sphingosine and the N-linked acyl chains. At 21 °C, the C16:0 and C14:0 ceramides showed condensed isotherms and the film topography revealed solid film patches (17.3-15.7 Å thick) that coalesced into a homogeneous surface by further compression. On the other hand, in the more asymmetric C12:0 and C10:0 ceramides, liquid expanded states and liquid expanded-condensed transitions occurred. In the phase coexistence region, the condensed state of these compounds formed flowerlike domains (11.1-13.3 Å thick). C12:0 ceramide domains were larger and more densely branched than those of C10:0 ceramide. Both the film thickness and the surface dipole moment of the condensed state increased with ceramide N-acyl chain length. Bending of the sphingosine chain over the N-linked acyl chain in the more asymmetric ceramides can account for the variation of the surface electrostatics, topography, and thickness of the films with the acyl chain mismatch.
Collapse
Affiliation(s)
- Fernando Dupuy
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, República Argentina
| | | | | |
Collapse
|
26
|
Benesch MG, Mannock DA, McElhaney RN. Sterol chemical configuration influences the thermotropic phase behaviour of dipalmitoylphosphatidylcholine bilayers containing 5α-cholestan-3β- and 3α-ol. Chem Phys Lipids 2011; 164:62-9. [DOI: 10.1016/j.chemphyslip.2010.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/20/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
|
27
|
Sterol chemical configuration and conformation influence the thermotropic phase behaviour of dipalmitoylphosphatidylcholine mixtures containing 5β-cholestan-3β- and -3α-ol. Chem Phys Lipids 2011; 164:70-7. [DOI: 10.1016/j.chemphyslip.2010.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 10/20/2010] [Accepted: 10/27/2010] [Indexed: 01/27/2023]
|
28
|
Fanani ML, Hartel S, Maggio B, De Tullio L, Jara J, Olmos F, Oliveira RG. The action of sphingomyelinase in lipid monolayers as revealed by microscopic image analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1309-23. [DOI: 10.1016/j.bbamem.2010.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 12/16/2009] [Accepted: 01/04/2010] [Indexed: 11/26/2022]
|
29
|
Gaggiotti MC, Del Boca M, Castro G, Caputto BL, Borioli GA. The immediate-early oncoproteins Fra-1, c-Fos, and c-Jun have distinguishable surface behavior and interactions with phospholipids. Biopolymers 2009; 91:710-8. [PMID: 19384981 DOI: 10.1002/bip.21212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This work explores the surface properties of the transcription factor Fra-1 and compares them with those of two other immediate early proteins, c-Fos and c-Jun, to establish generalities and differences in the surface behavior and interaction with phospholipids of this type of proteins. We present several experimental clues of the flexible nature of Fra-1, c-Fos, and c-Jun that support sequence-based predictions of their intrinsical disorder. The values of surface parameters for Fra-1 are similar in general to those of c-Fos and c-Jun. However, we find differences in the interactions of the three proteins with phospholipids. The closely related Fra-1 and c-Fos share affinity for anionic lipids but the former has more affinity for a condensed phase and senses a change in DPPC phase, while the latter has more affinity for an expanded phase. These features are in contrast with our previous finding that c-Jun is not selective for phospholipid polar head group or charge. We show here that at least some immediate early transcription factors can interact with membrane phospholipids in a distinguishable manner, and this shall provide a basis for their potential capacity to regulate membrane-mediated cellular processes.
Collapse
Affiliation(s)
- María Cecilia Gaggiotti
- Centro de Investigaciones en Química Biológica de Córdoba, (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, República Argentina
| | | | | | | | | |
Collapse
|
30
|
Cantu' L, Corti M, Brocca P, Del Favero E. Structural aspects of ganglioside-containing membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:202-8. [PMID: 19063860 DOI: 10.1016/j.bbamem.2008.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 11/04/2008] [Accepted: 11/04/2008] [Indexed: 11/15/2022]
Abstract
The demand for understanding the physical role of gangliosides in membranes is pressing, due to the high number of diverse and crucial biological functions in which they are involved, needing a unifying thread. To this purpose, model systems including gangliosides have been subject of extensive structural studies. Although showing different levels of complication, all models share the need for simplicity, in order to allow for physico-chemical clarity, so they keep far from the extreme complexity of the true biological systems. Nonetheless, as widely agreed, they provide a basic hint on the structural contribution specific molecules can pay to the complex aggregate. This topic we address in the present review. Gangliosides are likely to play their physical role through metamorphism, cooperativity and demixing, that is, they tend to segregate and identify regions where they can dictate and modulate the geometry and the topology of the structure, and its mechanical properties. Strong three-dimensional organisation and cooperativity are exploited to scale up the local arrangement hierarchically from the nano- to the mesoscale, influencing the overall morphology of the structure.
Collapse
Affiliation(s)
- Laura Cantu'
- Department of Chemistry, Biochemistry and Biotechnologies for Medicine, University of Milano, Segrate (Mi), Italy.
| | | | | | | |
Collapse
|