Tallima H, Azzazy HME, El Ridi R. Cell surface sphingomyelin: key role in cancer initiation, progression, and immune evasion.
Lipids Health Dis 2021;
20:150. [PMID:
34717628 PMCID:
PMC8557557 DOI:
10.1186/s12944-021-01581-y]
[Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
Cell surface biochemical changes, notably excessive increase in outer leaflet sphingomyelin (SM) content, are important in cancer initiation, growth, and immune evasion. Innumerable reports describe methods to initiate, promote, or enhance immunotherapy of clinically detected cancer, notwithstanding the challenges, if not impossibility, of identification of tumor-specific, or associated antigens, the lack of tumor cell surface membrane expression of major histocompatibility complex (MHC) class I alpha and β2 microglobulin chains, and lack of expression or accessibility of Fas and other natural killer cell immune checkpoint molecules. Conversely, SM synthesis and hydrolysis are increasingly implicated in initiation of carcinogenesis and promotion of metastasis. Surface membrane SM readily forms inter- and intra- molecular hydrogen bond network, which excessive tightness would impair cell-cell contact inhibition, inter- and intra-cellular signals, metabolic pathways, and susceptibility to host immune cells and mediators. The present review aims at clarifying the tumor immune escape mechanisms, which face common immunotherapeutic approaches, and attracting attention to an entirely different, neglected, key aspect of tumorigenesis associated with biochemical changes in the cell surface that lead to failure of contact inhibition, an instrumental tumorigenesis mechanism. Additionally, the review aims to provide evidence for surface membrane SM levels and roles in cells resistance to death, failure to respond to growth suppressor signals, and immune escape, and to suggest possible novel approaches to cancer control and cure.
Collapse