1
|
Ijinu TP, De Lellis LF, Shanmugarama S, Pérez-Gregorio R, Sasikumar P, Ullah H, Buccato DG, Di Minno A, Baldi A, Daglia M. Anthocyanins as Immunomodulatory Dietary Supplements: A Nutraceutical Perspective and Micro-/Nano-Strategies for Enhanced Bioavailability. Nutrients 2023; 15:4152. [PMID: 37836436 PMCID: PMC10574533 DOI: 10.3390/nu15194152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Anthocyanins (ACNs) have attracted considerable attention for their potential to modulate the immune system. Research has revealed their antioxidant and anti-inflammatory properties, which play a crucial role in immune regulation by influencing key immune cells, such as lymphocytes, macrophages, and dendritic cells. Moreover, ACNs contribute towards maintaining a balance between proinflammatory and anti-inflammatory cytokines, thus promoting immune health. Beyond their direct effects on immune cells, ACNs significantly impact gut health and the microbiota, essential factors in immune regulation. Emerging evidence suggests that they positively influence the composition of the gut microbiome, enhancing their immunomodulatory effects. Furthermore, these compounds synergize with other bioactive substances, such as vitamins and minerals, further enhancing their potential as immune-supporting dietary supplements. However, detailed clinical studies must fully validate these findings and determine safe dosages across varied populations. Incorporating these natural compounds into functional foods or supplements could revolutionize the management of immune-related conditions. Personalized nutrition and healthcare strategies may be developed to enhance overall well-being and immune resilience by fully understanding the mechanisms underlying the actions of their components. Recent advancements in delivery methods have focused on improving the bioavailability and effectiveness of ACNs, providing promising avenues for future applications.
Collapse
Affiliation(s)
- Thadiyan Parambil Ijinu
- Naturæ Scientific, Kerala University-Business Innovation and Incubation Centre, Kariavattom Campus, University of Kerala, Thiruvananthapuram 695581, India;
- The National Society of Ethnopharmacology, VRA-179, Mannamoola, Peroorkada P.O., Thiruvananthapuram 695005, India
| | - Lorenza Francesca De Lellis
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Santny Shanmugarama
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Rosa Pérez-Gregorio
- Food and Health Omics Group, Institute of Agroecology and Food, Faculty of Sciences, University of Vigo, 32004 Ourense, Spain;
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Department of Analytical and Food Chemistry, Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 32002 Ourense, Spain
| | | | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Alessandra Baldi
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (L.F.D.L.); (D.G.B.); (A.D.M.); (A.B.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Jiang F, Guo Y, Hu L, Zhang M, Meng J, Si Y, Shi H. Role of nuclear factor of activated T Cells-1 in Sepsis-induced behavioral deficits in mice. Brain Res 2023; 1806:148299. [PMID: 36842570 DOI: 10.1016/j.brainres.2023.148299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023]
Abstract
INTRODUCTION The nuclear factor of activated T cells-1 (NFAT1) is involved in both neuroinflammation and cognitive dysfunction. In this study, we examined the role of NFAT1 in sepsis-induced cognitive impairment in a mouse model. METHODS Sepsis was established in adult mice by cecal ligation and puncture (CLP). Novel object recognition tests on days 14-21 and fear conditioning tests on days 22-23 post-surgery showed that CLP impaired both behaviors. BV2 microglia cells exposed to lipopolysaccharide (LPS) were used to examine the effects of short interfering RNA targeting NFAT1 on autophagy and inflammatory cytokines. RESULTS CLP increased the expression of NFAT1 in hippocampal microglia and induced hippocampal autophagy by downregulating p62, upregulating beclin-1 and autophagy-related gene-5, and increasing the ratio of microtubule-associated protein 1 light chain 3-I (LC3-I) to LC3-II. In addition, CLP shifted microglial polarization from M2 to M1 and the production of inflammatory cytokines, similar to the effects of lipopolysaccharide on BV2 microglia cells. Conversely, NFAT1 knockdown or the autophagy inhibitor 3-methyladenine attenuated the effects of CLP on autophagy and inflammation in vitro and in vivo, while rapamycin partially reversed the protective effects of NFAT1 inhibition. CONCLUSION This study suggests that NFAT1 downregulation attenuates sepsis-induced behavioral deficits by inhibiting autophagy, microglia polarization, and neuroinflammation..
Collapse
Affiliation(s)
- Fan Jiang
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Yaoyi Guo
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Liang Hu
- Department of Pharmacology, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Mengxue Zhang
- Department of Pathology, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jieqiong Meng
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Yanna Si
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China.
| | - Hongwei Shi
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China.
| |
Collapse
|
3
|
Amyloid Beta Oligomers-Induced Ca2+ Entry Pathways: Role of Neuronal Networks, NMDA Receptors and Amyloid Channel Formation. Biomedicines 2022; 10:biomedicines10051153. [PMID: 35625890 PMCID: PMC9138537 DOI: 10.3390/biomedicines10051153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
The molecular basis of amyloid toxicity in Alzheimer’s disease (AD) remains controversial. Amyloid β (Aβ) oligomers promote Ca2+ influx, mitochondrial Ca2+ overload and apoptosis in hippocampal neurons in vivo and in vitro, but the primary Ca2+ entry pathways are unclear. We studied Ca2+ entry pathways induced by Aβ oligomers in rat hippocampal and cerebellar neurons. Aβ oligomers induce Ca2+ entry in neurons. Ca2+ responses to Aβ oligomers are large after synaptic networking and prevented by blockers of synaptic transmission. In contrast, in neurons devoid of synaptic connections, Ca2+ responses to Aβ oligomers are small and prevented only by blockers of amyloid channels (NA7) and NMDA receptors (MK801). A combination of NA7 and MK801 nearly abolished Ca2+ responses. Non-neuronal cells bearing NMDA receptors showed Ca2+ responses to oligomers, whereas cells without NMDA receptors did not exhibit Ca2+ responses. The expression of subunits of the NMDA receptor NR1/ NR2A and NR1/NR2B in HEK293 cells lacking endogenous NMDA receptors restored Ca2+ responses to NMDA but not to Aβ oligomers. We conclude that Aβ oligomers promote Ca2+ entry via amyloid channels and NMDA receptors. This may recruit distant neurons intertwisted by synaptic connections, spreading excitation and recruiting further NMDA receptors and voltage-gated Ca2+ channels, leading to excitotoxicity and neuron degeneration in AD.
Collapse
|
4
|
Delphinidin diminishes in vitro interferon-γ and interleukin-17 producing cells in patients with psoriatic disease. Immunol Res 2021; 70:161-173. [PMID: 34825313 DOI: 10.1007/s12026-021-09251-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
The anthocyanidin delphinidin reduces psoriasiform lesions and inflammatory mediators in human cell culture systems. Its role in psoriatic disease has not yet been investigated. We assessed delphinidin's in vitro immunomodulatory effect on ex vivo stimulated peripheral blood mononuclear cells (PBMCs) from 50 individuals [26 with psoriasis, 10 with psoriatic arthritis (PsA) and 14 healthy controls (HCs)]. Cells were either left untreated or stimulated with PMA plus ionomycin in the presence or absence of delphinidin. Intracellular production of interferon-γ (IFNγ), interleukin-17A (IL-17A), and interleukin-10 (IL-10) was measured flow cytometrically. Delphinidin dose-dependently reduced IFNγ+ T cells from patients and HCs. The mean IFNγ decrease in CD4+ T subpopulations was 42.5 ± 28% for psoriasis patients, 51.8 ± 21.5% for PsA patients and 49 ± 17% for HCs (p < 0.001 for all). Similarly, IFNγ reduction in CD8+ T cells was 34 ± 21.6% for psoriasis patients, 47.1 ± 22.8% for PsA and 44.8 ± 14.3% for HCs (P < 0.001 for all). An inhibitory effect of delphinidin was also noted in IFNγ producing NKs and NKTs from psoriasis individuals. Delphinidin also significantly decreased IL-17+ CD4+ T cells in all tested subjects, with marginal effect on the increase of IL-10-producing T regulatory subsets. In conclusion, delphinidin exerts a profound in vitro anti-inflammatory effect in psoriasis and psoriatic arthritis by inhibiting IFNγ+ innate and adaptive cells and T helper (Th) 17 cells. If this effect is also exerted in vivo, delphinidin may be regarded as a nutraceutical with immunosuppressive potential.
Collapse
|
5
|
Chen Z, Zhang R, Shi W, Li L, Liu H, Liu Z, Wu L. The Multifunctional Benefits of Naturally Occurring Delphinidin and Its Glycosides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11288-11306. [PMID: 31557009 DOI: 10.1021/acs.jafc.9b05079] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Delphinidin (Del) and its glycosides are water-soluble pigments, belonging to a subgroup of flavonoids. They are health-promoting candidates for pharmaceutical and nutraceutical uses, as indicated by exhibiting antioxidation, anti-inflammation, antimicroorganism, antidiabetes, antiobesity, cardiovascular protection, neuroprotection, and anticancer properties. Glycosylation modification of Del is associated with increased stability and reduced biological activity. Del and its glycosides can be the alternative inhibitors of CBRs, ERα/β, EGFR, BCRP, and SGLT-1, and virtual docking indicates that the sugar moiety may not effectively interact with the active sites of the targets. Structure-based characteristics confer the multifunctional properties of Del and its glycosides. Because of their health-promoting effects, Del and its glycosides are promising and have been developed as potential pharmaceuticals. However, more investigation on the underlying mechanisms of Del and its glycosides in mediating cellular processes with high specificity are still needed. The research progression of Del and its glycosides over the last 10 years is comprehensively reviewed in this article.
Collapse
Affiliation(s)
- Zhixi Chen
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Rui Zhang
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Weimei Shi
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Linfu Li
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Hai Liu
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Zhiping Liu
- School of Basic Medicine , Gannan Medical University , Ganzhou 341000 , China
| | - Longhuo Wu
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| |
Collapse
|
6
|
Indirect Measurement of CRAC Channel Activity Using NFAT Nuclear Translocation by Flow Cytometry in Jurkat Cells. Methods Mol Biol 2019; 1843:83-94. [PMID: 30203279 DOI: 10.1007/978-1-4939-8704-7_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Flow cytometry is a powerful technology to assess the presence of NFAT in the nuclei after CRAC channel activation. Here we described a simplified procedure for the analysis of CRAC channel activity using NFAT nuclear translocation by flow cytometry, based on the isolation of Jurkat E6-1 cell nuclei.
Collapse
|
7
|
Zhao R, Meng X, Jia G, Yu Y, Song B. Oral pre-administration of Purslane polysaccharides enhance immune responses to inactivated foot-and-mouth disease vaccine in mice. BMC Vet Res 2019; 15:38. [PMID: 30683105 PMCID: PMC6347817 DOI: 10.1186/s12917-019-1782-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/16/2019] [Indexed: 01/18/2023] Open
Abstract
Background Foot-and-mouth disease (FMD) is one of the greatest disease threats to animal husbandry worldwide. Though various vaccines against foot-and-mouth disease virus (FMDV) have been developed, vaccine effectiveness is still not satisfactory. In this work, we studied the potential ability of Purslane polysaccharide (POL-P3b) as a nutrient food additive to enhance immune responses to FMD vaccination in mice. Results Our results demonstrated that oral administration of POL-P3b at mid- and high-doses significantly enhanced the FMDV-specific cellular and humoral immune responses in mice and increased the concentration of Ca2+ in lymphocytes. Importantly, POL-P3b could promote intestinal DC maturation and stimulate the secretion of intestinal SIgA in a dose-dependent manner. Moreover, the acute toxicity study showed that POL-P3b was non-toxic and safe in mice. Conclusion Our findings provided solid evidence that POL-P3b might be a novel immunostimulator and a boosting agent for increasing the efficacy of FMD vaccination, and the mechanism was related to stimulating the intestinal mucosal immune function that subsequently enhanced the efficacy of FMD vaccination through pre-administration of oral POL-P3b.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Pharmaceutical Engineering, College of Life Science & Biotechnology, Heilongjiang August First Land Reclamation University, Daqing High-Tech Industrial Development Zone, Daqing, 163319, People's Republic of China.
| | - Xiangyu Meng
- Department of Gynaecology and Obstetrics, Daqing Oilfield Hospital, Daqing, 163311, People's Republic of China
| | - Guiyan Jia
- Department of Pharmaceutical Engineering, College of Life Science & Biotechnology, Heilongjiang August First Land Reclamation University, Daqing High-Tech Industrial Development Zone, Daqing, 163319, People's Republic of China
| | - Yongzhong Yu
- Department of Pharmaceutical Engineering, College of Life Science & Biotechnology, Heilongjiang August First Land Reclamation University, Daqing High-Tech Industrial Development Zone, Daqing, 163319, People's Republic of China
| | - Bocui Song
- Department of Pharmaceutical Engineering, College of Life Science & Biotechnology, Heilongjiang August First Land Reclamation University, Daqing High-Tech Industrial Development Zone, Daqing, 163319, People's Republic of China
| |
Collapse
|
8
|
Store-operated calcium entry in thrombosis and thrombo-inflammation. Cell Calcium 2018; 77:39-48. [PMID: 30530092 DOI: 10.1016/j.ceca.2018.11.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/31/2018] [Accepted: 11/14/2018] [Indexed: 01/03/2023]
Abstract
Cytosolic free calcium (Ca2+) is a second messenger regulating a wide variety of functions in blood cells, including adhesion, activation, proliferation and migration. Store-operated Ca2+ entry (SOCE), triggered by depletion of Ca2+ from the endoplasmic reticulum, provides a main mechanism of regulated Ca2+ influx in blood cells. SOCE is mediated and regulated by isoforms of the ion channel proteins ORAI and TRP, and the transmembrane Ca2+ sensors stromal interaction molecules (STIMs), respectively. This report provides an overview of the (patho)physiological importance of SOCE in blood cells implicated in thrombosis and thrombo-inflammation, i.e. platelets and immune cells. We also discuss the physiological consequences of dysregulated SOCE in platelets and immune cells and the potential of SOCE inhibition as a therapeutic option to prevent or treat arterial thrombosis as well as thrombo-inflammatory disease states such as ischemic stroke.
Collapse
|
9
|
Estrogen receptor α/HDAC/NFAT axis for delphinidin effects on proliferation and differentiation of T lymphocytes from patients with cardiovascular risks. Sci Rep 2017; 7:9378. [PMID: 28839227 PMCID: PMC5570903 DOI: 10.1038/s41598-017-09933-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 08/01/2017] [Indexed: 12/16/2022] Open
Abstract
Delphinidin, an anthocyanin present in red wine, has been reported to preserve the integrity of endothelium via an estrogen receptor alpha (ERα)-dependent mechanism. However, the effect of delphinidin on the immune response in obesity-related inflammation remains unknown. Given the important role of T lymphocytes in obesity-related inflammation, we investigated the effect of delphinidin on proliferation and differentiation of T lymphocytes from healthy subjects and metabolic syndrome patients. Delphinidin decreased the proliferation stimulated by different agents acting through different mechanisms. This effect of delphinidin was associated with its ability to inhibit Ca2+ signaling via reduced store-operated Ca2+ entry and release, and subsequent decrease of HDAC and NFAT activations. Delphinidin also inhibited ERK1/2 activation. Pharmacological inhibition of ER with fulvestrant, or deletion of ERα, prevented the effect of delphinidin. Further, delphinidin suppressed the differentiation of T cells toward Th1, Th17 and Treg without affecting Th2 subsets. Interestingly, delphinidin inhibited both proliferation and differentiation of T cells taken from patients with cardiovascular risks associated with metabolic syndrome. Together, we propose that delphinidin, by acting on ERα via multiple cellular targets, may represent a new approach against chronic inflammation associated with T lymphocyte activation, proliferation and differentiation, in patients with cardiovascular risk factors.
Collapse
|
10
|
Delphinidin Reduces Glucose Uptake in Mice Jejunal Tissue and Human Intestinal Cells Lines through FFA1/GPR40. Int J Mol Sci 2017; 18:ijms18040750. [PMID: 28379159 PMCID: PMC5412335 DOI: 10.3390/ijms18040750] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 11/23/2022] Open
Abstract
Anthocyanins are pigments with antihyperglycemic properties, and they are potential candidates for developing functional foods for the therapy or prevention of Diabetes mellitus type 2 (DM2). The mechanism of these beneficial effects of anthocyanins are, however, hard to explain, given their very low bioavailability due to poor intestinal absorption. We propose that free fatty acid receptor 1 (FFA1, also named GPR40), is involved in an inhibitory effect of the anthocyanidin delphinidin over intestinal glucose absorption. We show the direct effects of delphinidin on the intestine using jejunum samples from RF/J mice, and the human intestinal cell lines HT-29, Caco-2, and NCM460. By the use of specific pharmacological antagonists, we determined that delphinidin inhibits glucose absorption in both mouse jejunum and a human enterocytic cell line in a FFA1-dependent manner. Delphinidin also affects the function of sodium-glucose cotransporter 1 (SGLT1). Intracellular signaling after FFA1 activation involved cAMP increase and cytosolic Ca2+ oscillations originated from intracellular Ca2+ stores and were followed by store-operated Ca2+ entry. Taken together, our results suggest a new GPR-40 mediated local mechanism of action for delphinidin over intestinal cells that may in part explain its antidiabetic effect. These findings are promising for the search for new prevention and pharmacological treatment strategies for DM2 management.
Collapse
|
11
|
Blatter LA. Tissue Specificity: SOCE: Implications for Ca 2+ Handling in Endothelial Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:343-361. [PMID: 28900923 DOI: 10.1007/978-3-319-57732-6_18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many cellular functions of the vascular endothelium are regulated by fine-tuned global and local, microdomain-confined changes of cytosolic free Ca2+ ([Ca2+]i). Vasoactive agonist-induced stimulation of vascular endothelial cells (VECs) typically induces Ca2+ release through IP3 receptor Ca2+ release channels embedded in the membrane of the endoplasmic reticulum (ER) Ca2+ store, followed by Ca2+ entry from the extracellular space elicited by Ca2+ store depletion and referred to as capacitative or store-operated Ca2+ entry (SOCE). In vascular endothelial cells, SOCE is graded with the degree of store depletion and controlled locally in the subcellular microdomain where depletion occurs. SOCE provides distinct Ca2+ signals that selectively control specific endothelial functions: in calf pulmonary artery endothelial cells, the SOCE Ca2+ signal drives nitric oxide (an endothelium-derived relaxing factor of the vascular smooth muscle) production and controls activation and nuclear translocation of the transcription factor NFAT. Both cellular events are not affected by Ca2+ signals of comparable magnitude arising directly from Ca2+ release from intracellular stores, clearly indicating that SOCE regulates specific Ca2+-dependent cellular tasks by a unique and exclusive mechanism. This review discusses the mechanisms of intracellular Ca2+ regulation in vascular endothelial cells and the role of store-operated Ca2+ entry for endothelium-dependent smooth muscle relaxation and nitric oxide signaling, endothelial oxidative stress response, and excitation-transcription coupling in the vascular endothelium.
Collapse
Affiliation(s)
- Lothar A Blatter
- Department of Physiology and Biophysics, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL, 60612, USA.
| |
Collapse
|
12
|
Gonzalez Bosc LV, Plomaritas DR, Herbert LM, Giermakowska W, Browning C, Jernigan NL. ASIC1-mediated calcium entry stimulates NFATc3 nuclear translocation via PICK1 coupling in pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2016; 311:L48-58. [PMID: 27190058 DOI: 10.1152/ajplung.00040.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022] Open
Abstract
The development of chronic hypoxia (CH)-induced pulmonary hypertension is associated with increased pulmonary arterial smooth muscle cell (PASMC) Ca(2+) influx through acid-sensing ion channel-1 (ASIC1) and activation of the Ca(2+)/calcineurin-dependent transcription factor known as nuclear factor of activated T-cells isoform c3 (NFATc3). Whether Ca(2+) influx through ASIC1 contributes to NFATc3 activation in the pulmonary vasculature is unknown. Furthermore, both ASIC1 and calcineurin have been shown to interact with the scaffolding protein known as protein interacting with C kinase-1 (PICK1). In the present study, we tested the hypothesis that ASIC1 contributes to NFATc3 nuclear translocation in PASMC in a PICK1-dependent manner. Using both ASIC1 knockout (ASIC1(-/-)) mice and pharmacological inhibition of ASIC1, we demonstrate that ASIC1 contributes to CH-induced (1 wk at 380 mmHg) and endothelin-1 (ET-1)-induced (10(-7) M) Ca(2+) responses and NFATc3 nuclear import in PASMC. The interaction between ASIC1/PICK1/calcineurin was shown using a Duolink in situ Proximity Ligation Assay. Inhibition of PICK1 by using FSC231 abolished ET-1-induced and ionomycin-induced NFATc3 nuclear import, but it did not alter ET-1-mediated Ca(2+) responses, suggesting that PICK1 acts downstream of Ca(2+) influx. The key findings of the present work are that 1) Ca(2+) influx through ASIC1 mediates CH- and ET-1-induced NFATc3 nuclear import and 2) the scaffolding protein PICK1 is necessary for NFATc3 nuclear import. Together, these data provide an essential link between CH-induced ASIC1-mediated Ca(2+) influx and activation of the NFATc3 transcription factor. Identification of this ASIC1/PICK1/NFATc3 signaling complex increases our understanding of the mechanisms contributing to the vascular remodeling and increased vascular contractility that are associated with CH-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Laura V Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Danielle R Plomaritas
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Lindsay M Herbert
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Wieslawa Giermakowska
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Carly Browning
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
13
|
CXXC5 regulates differentiation of C2C12 myoblasts into myocytes. J Muscle Res Cell Motil 2014; 35:259-65. [DOI: 10.1007/s10974-014-9400-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
|