1
|
Bai X, Chen T, Li Y, Ge X, Qiu C, Gou H, Wei S, Liu T, Yang W, Yang L, Liang Y, Jia Z, Lv L, Li T. PD-L1 expression levels in mesenchymal stromal cells predict their therapeutic values for autoimmune hepatitis. Stem Cell Res Ther 2023; 14:370. [PMID: 38111045 PMCID: PMC10729378 DOI: 10.1186/s13287-023-03594-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Autoimmune hepatitis is a chronic inflammatory hepatic disorder with no effective treatment. Mesenchymal stromal cells (MSCs) have emerged as a promising treatment owing to their unique advantages. However, their heterogeneity is hampering use in clinical applications. METHODS Wharton's jelly derived MSCs (WJ-MSCs) were isolated from 58 human donors using current good manufacturing practice conditions. Gene expression profiles of the WJ-MSCs were analyzed by transcriptome and single-cell RNA-sequencing (scRNA-seq), and subsequent functional differences were assessed. Expression levels of programmed death-ligand 1 (PD-L1) were used as an indicator to screen WJ-MSCs with varied immunomodulation activities and assessed their corresponding therapeutic effects in a mouse model of concanavalin A-induced autoimmune hepatitis. RESULTS The 58 different donor-derived WJ-MSCs were grouped into six gene expression profile clusters. The gene in different clusters displayed obvious variations in cell proliferation, differentiation bias, trophic factor secretion, and immunoregulation. Data of scRNA-seq revealed four distinct WJ-MSCs subpopulations. Notably, the different immunosuppression capacities of WJ-MSCs were positively correlated with PD-L1 expression. WJ-MSCs with high expression of PD-L1 were therapeutically superior to WJ-MSCs with low PD-L1 expression in treating autoimmune hepatitis. CONCLUSION PD-L1 expression levels of WJ-MSCs could be regarded as an indicator to choose optimal MSCs for treating autoimmune disease. These findings provided novel insights into the quality control of MSCs and will inform improvements in the therapeutic benefits of MSCs.
Collapse
Affiliation(s)
- Xilong Bai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China
- Department of Hematology, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China
| | - Tingwei Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yuqi Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Xiaofan Ge
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China
| | - Caie Qiu
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China
| | - Huili Gou
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China
| | - Sili Wei
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China
| | - Tingting Liu
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China
| | - Wei Yang
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China
| | - Liting Yang
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China
| | - Yingmin Liang
- Department of Hematology, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China
| | - Zhansheng Jia
- Department of Infection and Liver Disease, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China
| | - Liangshan Lv
- Department of Minimally Invasive Interventional Radiology, Xi'an Gaoxin Hospital, Xi'an, , 710075, Shaanxi, China
| | - Tianqing Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China.
| |
Collapse
|
2
|
Hu Z, Luo Y, Ni R, Hu Y, Yang F, Du T, Zhu Y. Biological importance of human amniotic membrane in tissue engineering and regenerative medicine. Mater Today Bio 2023; 22:100790. [PMID: 37711653 PMCID: PMC10498009 DOI: 10.1016/j.mtbio.2023.100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
The human amniotic membrane (hAM) is the innermost layer of the placenta. Its distinctive structure and the biological and physical characteristics make it a highly biocompatible material in a variety of regenerative medicine applications. It also acts as a supply of bioactive factors and cells, which indicate the advantages over other tissues. In this review, we firstly discussed the biological properties of hAM-derived cells in vivo or in vitro, along with their stemness of markers, pointing out a promising source of stem cells for regenerative medicine. Then, we systematically summarized current knowledge on the collection, preparation, preservation, and decellularization of hAM, as well as their characteristics helping to improve the understanding of applications in tissue engineering. Finally, we highlighted the recent advances in which hAM has undergone additional modifications to achieve an adequate perspective of regenerative medicine applications. More investigations are required in utilizing appropriate modifications to enhance the therapeutic effectiveness of hAM in the future.
Collapse
Affiliation(s)
- Zeming Hu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yang Luo
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Renhao Ni
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yiwei Hu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Fang Yang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Tianyu Du
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
3
|
Arki MK, Moeinabadi-Bidgoli K, Hossein-Khannazer N, Gramignoli R, Najimi M, Vosough M. Amniotic Membrane and Its Derivatives: Novel Therapeutic Modalities in Liver Disorders. Cells 2023; 12:2114. [PMID: 37626924 PMCID: PMC10453134 DOI: 10.3390/cells12162114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The liver is a vital organ responsible for metabolic and digestive functions, protein synthesis, detoxification, and numerous other necessary functions. Various acute, chronic, and neoplastic disorders affect the liver and hamper its biological functions. Most of the untreated liver diseases lead to inflammation and fibrosis which develop into cirrhosis. The human amniotic membrane (hAM), the innermost layer of the fetal placenta, is composed of multiple layers that include growth-factor rich basement membrane, epithelial and mesenchymal stromal cell layers. hAM possesses distinct beneficial anti-fibrotic, anti-inflammatory and pro-regenerative properties via the secretion of multiple potent trophic factors and/or direct differentiation into hepatic cells which place hAM-based therapies as potential therapeutic strategies for the treatment of chronic liver diseases. Decellularized hAM is also an ideal scaffold for liver tissue engineering as this biocompatible niche provides an excellent milieu for cell proliferation and hepatocytic differentiation. Therefore, the current review discusses the therapeutic potential of hAM and its derivatives in providing therapeutic solutions for liver pathologies including acute liver failure, metabolic disorders, liver fibrosis as well as its application in liver tissue engineering.
Collapse
Affiliation(s)
- Mandana Kazem Arki
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1546815514, Iran;
| | - Kasra Moeinabadi-Bidgoli
- Basic and Molecular Epidemiology of Gastroenterology Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1546815514, Iran;
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1546815514, Iran;
| | - Roberto Gramignoli
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, 17177 Stockholm, Sweden;
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, B-1200 Brussels, Belgium
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|
4
|
Razeghian E, Margiana R, Chupradit S, Bokov DO, Abdelbasset WK, Marofi F, Shariatzadeh S, Tosan F, Jarahian M. Mesenchymal Stem/Stromal Cells as a Vehicle for Cytokine Delivery: An Emerging Approach for Tumor Immunotherapy. Front Med (Lausanne) 2021; 8:721174. [PMID: 34513882 PMCID: PMC8430327 DOI: 10.3389/fmed.2021.721174] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 12/22/2022] Open
Abstract
Pro-inflammatory cytokines can effectively be used for tumor immunotherapy, affecting every step of the tumor immunity cycle. Thereby, they can restore antigen priming, improve the effector immune cell frequencies in the tumor microenvironment (TME), and eventually strengthen their cytolytic function. A renewed interest in the anticancer competencies of cytokines has resulted in a substantial promotion in the number of trials to address the safety and efficacy of cytokine-based therapeutic options. However, low response rate along with the high toxicity associated with high-dose cytokine for reaching desired therapeutic outcomes negatively affect their clinical utility. Recently, mesenchymal stem/stromal cells (MSCs) due to their pronounced tropism to tumors and also lower immunogenicity have become a promising vehicle for cytokine delivery for human malignancies. MSC-based delivery of the cytokine can lead to the more effective immune cell-induced antitumor response and provide sustained release of target cytokines, as widely evidenced in a myriad of xenograft models. In the current review, we offer a summary of the novel trends in cytokine immunotherapy using MSCs as a potent and encouraging carrier for antitumor cytokines, focusing on the last two decades' animal reports.
Collapse
Affiliation(s)
- Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Cipto Mangunkusumo Hospital, The National Referral Hospital, Central Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Dmitry O. Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Foad Tosan
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
5
|
Hassanzadeh A, Altajer AH, Rahman HS, Saleh MM, Bokov DO, Abdelbasset WK, Marofi F, Zamani M, Yaghoubi Y, Yazdanifar M, Pathak Y, Chartrand MS, Jarahian M. Mesenchymal Stem/Stromal Cell-Based Delivery: A Rapidly Evolving Strategy for Cancer Therapy. Front Cell Dev Biol 2021; 9:686453. [PMID: 34322483 PMCID: PMC8311597 DOI: 10.3389/fcell.2021.686453] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem/stromal cell (MSC)-based therapy has become an attractive and advanced scientific research area in the context of cancer therapy. This interest is closely linked to the MSC-marked tropism for tumors, suggesting them as a rational and effective vehicle for drug delivery for both hematological and solid malignancies. Nonetheless, the therapeutic application of the MSCs in human tumors is still controversial because of the induction of several signaling pathways largely contributing to tumor progression and metastasis. In spite of some evidence supporting that MSCs may sustain cancer pathogenesis, increasing proofs have indicated the suppressive influences of MSCs on tumor cells. During the last years, a myriad of preclinical and some clinical studies have been carried out or are ongoing to address the safety and efficacy of the MSC-based delivery of therapeutic agents in diverse types of malignancies. A large number of studies have focused on the MSC application as delivery vehicles for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), chemotherapeutic drug such as gemcitabine (GCB), paclitaxel (PTX), and doxorubicin (DOX), prodrugs such as 5-fluorocytosine (5-FC) and ganciclovir (GCV), and immune cell-activating cytokines along with oncolytic virus. In the current review, we evaluate the latest findings rendering the potential of MSCs to be employed as potent gene/drug delivery vehicle for inducing tumor regression with a special focus on the in vivo reports performed during the last two decades.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq
| | - Dmitry O. Bokov
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Yoda Yaghoubi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Yashwant Pathak
- Professor and Associate Dean for Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
- Adjunct Professor, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | | | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
6
|
Planat-Benard V, Varin A, Casteilla L. MSCs and Inflammatory Cells Crosstalk in Regenerative Medicine: Concerted Actions for Optimized Resolution Driven by Energy Metabolism. Front Immunol 2021; 12:626755. [PMID: 33995350 PMCID: PMC8120150 DOI: 10.3389/fimmu.2021.626755] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are currently widely used in cell based therapy regarding to their remarkable efficacy in controlling the inflammatory status in patients. Despite recent progress and encouraging results, inconstant therapeutic benefits are reported suggesting that significant breakthroughs in the understanding of MSCs immunomodulatory mechanisms of action remains to be investigated and certainly apprehended from original point of view. This review will focus on the recent findings regarding MSCs close relationship with the innate immune compartment, i.e. granulocytes and myeloid cells. The review will also consider the intercellular mechanism of communication involved, such as factor secretion, cell-cell contact, extracellular vesicles, mitochondria transfer and efferocytosis. Immune-like-properties of MSCs supporting part of their therapeutic effect in the clinical setting will be discussed, as well as their potentials (immunomodulatory, anti-bacterial, anti-inflammatory, anti-oxidant defenses and metabolic adaptation…) and effects mediated, such as cell polarization, differentiation, death and survival on various immune and tissue cell targets determinant in triggering tissue regeneration. Their metabolic properties in term of sensing, reacting and producing metabolites influencing tissue inflammation will be highlighted. The review will finally open to discussion how ongoing scientific advances on MSCs could be efficiently translated to clinic in chronic and age-related inflammatory diseases and the current limits and gaps that remain to be overcome to achieving tissue regeneration and rejuvenation.
Collapse
Affiliation(s)
- Valerie Planat-Benard
- RESTORE, University of Toulouse, UMR 1031-INSERM, 5070-CNRS, Etablissement Français du Sang-Occitanie (EFS), Université Paul Sabatier, Toulouse, France
| | - Audrey Varin
- RESTORE, University of Toulouse, UMR 1031-INSERM, 5070-CNRS, Etablissement Français du Sang-Occitanie (EFS), Université Paul Sabatier, Toulouse, France
| | - Louis Casteilla
- RESTORE, University of Toulouse, UMR 1031-INSERM, 5070-CNRS, Etablissement Français du Sang-Occitanie (EFS), Université Paul Sabatier, Toulouse, France
| |
Collapse
|
7
|
Liu S, Liu F, Zhou Y, Jin B, Sun Q, Guo S. Immunosuppressive Property of MSCs Mediated by Cell Surface Receptors. Front Immunol 2020; 11:1076. [PMID: 32849489 PMCID: PMC7399134 DOI: 10.3389/fimmu.2020.01076] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
In the past decade, mesenchymal stem cells (MSCs) tend to exhibit inherent tropism for refractory inflammatory diseases and engineered MSCs have appeared on the market as therapeutic agents. Recently, engineered MSCs target to cell surface molecules on immune cells has been a new strategy to improve MSC applications. In this review, we discuss the roles of multiple receptors (ICAM-1, Gal-9, PD-L1, TIGIT, CD200, and CXCR4) in the process of MSCs' immunosuppressive properties. Furthermore, we discuss the principles and strategies for developing receptor-regulated MSCs and their mechanisms of action and the challenges of using MSCs as immunosuppressive therapies.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Fei Liu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - You Zhou
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Baeku Jin
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Qiang Sun
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW During the last decades, the field of regenerative medicine has been rapidly evolving. Major progress has been made in the development of biological substitutes applying the principles of cell transplantation, material science, and bioengineering. RECENT FINDINGS Among other sources, amniotic-derived products have been used for decades in various fields of medicine as a biomaterial for the wound care and tissue replacement. Moreover, human amniotic epithelial and mesenchymal cells have been intensively studied for their immunomodulatory capacities. Amniotic cells possess two major characteristics that have already been widely exploited. The first is their ability to modulate and suppress the innate and adaptive immunities, making them a true asset for chronic inflammatory disorders and for the induction of tolerance in transplantation models. The second is their multilineage differentiation capacity, offering a source of cells for tissue engineering. The latter combined with the use of amniotic membrane as a scaffold offers all components necessary to create an optimal environment for cell and tissue regeneration. This review summarizes beneficial properties of hAM and its derivatives and discusses their potential in regenerative medicine.
Collapse
Affiliation(s)
- Charles-Henri Wassmer
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
- Institute of Medical Research, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
9
|
Ghamari SH, Abbasi-Kangevari M, Tayebi T, Bahrami S, Niknejad H. The Bottlenecks in Translating Placenta-Derived Amniotic Epithelial and Mesenchymal Stromal Cells Into the Clinic: Current Discrepancies in Marker Reports. Front Bioeng Biotechnol 2020; 8:180. [PMID: 32232037 PMCID: PMC7083014 DOI: 10.3389/fbioe.2020.00180] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/24/2020] [Indexed: 12/23/2022] Open
Abstract
Placenta-derived amniotic cells have prominent features for application in regenerative medicine. However, there are still discrepancies in the characterization of human amniotic epithelial and mesenchymal stromal cells. It seems crucial that the characterization of human amniotic membrane cells be investigated to determine whether there are currently discrepancies in their characterization reports. In addition, possible causes for the witnessed discrepancies need to be addressed toward paving the way for further clinical application and safer practices. The objective of this review is to investigate the marker characterization as well as the potential causes of the discrepancies in the previous reports on placenta-derived amniotic epithelial and mesenchymal stromal cells. The current discrepancies could be potentially due to reasons including passage number and epithelial to mesenchymal transition (EMT), cell heterogeneity, isolation protocols and cross-contamination, the region of cell isolation on placental disk, measuring methods, and gestational age.
Collapse
Affiliation(s)
- Seyyed-Hadi Ghamari
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Abbasi-Kangevari
- Student Research Committee, Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Tayebi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Magatti M, Vertua E, Cargnoni A, Silini A, Parolini O. The Immunomodulatory Properties of Amniotic Cells: The Two Sides of the Coin. Cell Transplant 2019; 27:31-44. [PMID: 29562786 PMCID: PMC6434482 DOI: 10.1177/0963689717742819] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Among the many cell types useful in developing therapeutic treatments, human amniotic cells from placenta have been proposed as valid candidates. Both human amniotic epithelial and mesenchymal stromal cells, and the conditioned medium generated from their culture, exert multiple immunosuppressive activities. Indeed, they inhibit T and B cell proliferation, suppress inflammatory properties of monocytes, macrophages, dendritic cells, neutrophils, and natural killer cells, while promoting induction of cells with regulatory functions such as regulatory T cells and anti-inflammatory M2 macrophages. These properties have laid the foundation for their use for the treatment of inflammatory-based diseases, and encouraging results have been obtained in different preclinical disease models where exacerbated inflammation is present. Moreover, an immune-privileged status of amniotic cells has been often highlighted. However, even if long-term engraftment of amniotic cells has been reported into immunocompetent animals, only few cells survive after infusion. Furthermore, amniotic cells have been shown to be able to induce immune responses in vivo and, under specific culture conditions, they can stimulate T cell proliferation in vitro. Although immunosuppressive properties are a widely recognized characteristic of amniotic cells, immunogenic and stimulatory activities appear to be less reported, sporadic events. In order to improve therapeutic outcome, the mechanisms responsible for the suppressive versus stimulatory activity need to be carefully addressed. In this review, both the immunosuppressive and immunostimulatory activity of amniotic cells will be discussed.
Collapse
Affiliation(s)
- Marta Magatti
- 1 Centro di Ricerca "E. Menni", Fondazione Poliambulanza- Istituto Ospedaliero, Brescia, Italy
| | - Elsa Vertua
- 1 Centro di Ricerca "E. Menni", Fondazione Poliambulanza- Istituto Ospedaliero, Brescia, Italy
| | - Anna Cargnoni
- 1 Centro di Ricerca "E. Menni", Fondazione Poliambulanza- Istituto Ospedaliero, Brescia, Italy
| | - Antonietta Silini
- 1 Centro di Ricerca "E. Menni", Fondazione Poliambulanza- Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- 1 Centro di Ricerca "E. Menni", Fondazione Poliambulanza- Istituto Ospedaliero, Brescia, Italy.,2 Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Italy
| |
Collapse
|
11
|
Mamidi MK, Das AK, Zakaria Z, Bhonde R. Mesenchymal stromal cells for cartilage repair in osteoarthritis. Osteoarthritis Cartilage 2016; 24:1307-16. [PMID: 26973328 DOI: 10.1016/j.joca.2016.03.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 02/09/2016] [Accepted: 03/03/2016] [Indexed: 02/08/2023]
Abstract
Treatment for articular cartilage damage is quite challenging as it shows limited repair and regeneration following injury. Non-operative and classical surgical techniques are inefficient in restoring normal anatomy and function of cartilage in osteoarthritis (OA). Thus, investigating new and effective strategies for OA are necessary to establish feasible therapeutic solutions. The emergence of the new discipline of regenerative medicine, having cell-based therapy as its primary focus, may enable us to achieve repair and restore the damaged articular cartilage. This review describes progress and development of employing mesenchymal stromal cell (MSC)-based therapy as a promising alternative for OA treatment. The objective of this review is to first, discuss how in vitro MSC chondrogenic differentiation mimics in vivo embryonic cartilage development, secondly, to describe various chondrogenic differentiation strategies followed by pre-clinical and clinical studies demonstrating their feasibility and efficacy. However, several challenges need to be tackled before this research can be translated to the clinics. In particular, better understanding of the post-transplanted cell behaviour and learning to enhance their potency in the disease microenvironment is essential. Final objective is to underscore the importance of isolation, storage, cell shipment, route of administration, optimum dosage and control batch to batch variations to realise the full potential of MSCs in OA clinical trials.
Collapse
Affiliation(s)
- M K Mamidi
- School of Regenerative Medicine, Manipal University, Bangalore 560065, India
| | - A K Das
- Department of Surgery, Taylor's University School of Medicine, Sungai Buloh Hospital, Selangor, Malaysia
| | - Z Zakaria
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - R Bhonde
- School of Regenerative Medicine, Manipal University, Bangalore 560065, India.
| |
Collapse
|
12
|
Wang TG, Xu J, Zhu AH, Lu H, Miao ZN, Zhao P, Hui GZ, Wu WJ. Human amniotic epithelial cells combined with silk fibroin scaffold in the repair of spinal cord injury. Neural Regen Res 2016; 11:1670-1677. [PMID: 27904501 PMCID: PMC5116849 DOI: 10.4103/1673-5374.193249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Treatment and functional reconstruction after central nervous system injury is a major medical and social challenge. An increasing number of researchers are attempting to use neural stem cells combined with artificial scaffold materials, such as fibroin, for nerve repair. However, such approaches are challenged by ethical and practical issues. Amniotic tissue, a clinical waste product, is abundant, and amniotic epithelial cells are pluripotent, have low immunogenicity, and are not the subject of ethical debate. We hypothesized that amniotic epithelial cells combined with silk fibroin scaffolds would be conducive to the repair of spinal cord injury. To test this, we isolated and cultured amniotic epithelial cells, and constructed complexes of these cells and silk fibroin scaffolds. Implantation of the cell-scaffold complex into a rat model of spinal cord injury resulted in a smaller glial scar in the damaged cord tissue than in model rats that received a blank scaffold, or amniotic epithelial cells alone. In addition to a milder local immunological reaction, the rats showed less inflammatory cell infiltration at the transplant site, milder host-versus-graft reaction, and a marked improvement in motor function. These findings confirm that the transplantation of amniotic epithelial cells combined with silk fibroin scaffold can promote the repair of spinal cord injury. Silk fibroin scaffold can provide a good nerve regeneration microenvironment for amniotic epithelial cells.
Collapse
Affiliation(s)
- Ting-Gang Wang
- Department of Neurology, Wuxi Third People's Hospital, Wuxi, Jiangsu Province, China
| | - Jie Xu
- Department of Neurosurgery, Wuxi Third People's Hospital, Wuxi, Jiangsu Province, China
| | - Ai-Hua Zhu
- Department of Neurosurgery, Wuxi Third People's Hospital, Wuxi, Jiangsu Province, China
| | - Hua Lu
- Department of Neurosurgery, Wuxi Third People's Hospital, Wuxi, Jiangsu Province, China
| | - Zong-Ning Miao
- Department of Neurosurgery, Wuxi Third People's Hospital, Wuxi, Jiangsu Province, China
| | - Peng Zhao
- Department of Neurosurgery, Wuxi Third People's Hospital, Wuxi, Jiangsu Province, China
| | - Guo-Zhen Hui
- First Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province, China
| | - Wei-Jiang Wu
- Department of Neurosurgery, Wuxi Third People's Hospital, Wuxi, Jiangsu Province, China
| |
Collapse
|
13
|
Silini AR, Cargnoni A, Magatti M, Pianta S, Parolini O. The Long Path of Human Placenta, and Its Derivatives, in Regenerative Medicine. Front Bioeng Biotechnol 2015; 3:162. [PMID: 26539433 PMCID: PMC4609884 DOI: 10.3389/fbioe.2015.00162] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/28/2015] [Indexed: 12/23/2022] Open
Abstract
In the 1800s, a baby born with a caul, a remnant of the amniotic sack or fetal membranes, was thought to be lucky, special, or protected. Over time, fetal membranes lost their legendary power and were soon considered nothing more than biological waste after birth. However, placenta tissues have reclaimed their potential and since the early 1900s an increasing body of evidence has shown that these tissues have clinical benefits in a wide range of wound repair and surgical applications. Nowadays, there is a concerted effort to understand the mechanisms underlying the beneficial effects of placental tissues, and, more recently, cells derived thereof. This review will summarize the historical and current clinical applications of human placental tissues, and cells isolated from these tissues, and discuss some mechanisms thought to be responsible for the therapeutic effects observed after tissue and/or cell transplantation.
Collapse
Affiliation(s)
- Antonietta R. Silini
- Centro di Ricerca “E. Menni”, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Anna Cargnoni
- Centro di Ricerca “E. Menni”, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Marta Magatti
- Centro di Ricerca “E. Menni”, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Stefano Pianta
- Centro di Ricerca “E. Menni”, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Centro di Ricerca “E. Menni”, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| |
Collapse
|