1
|
Bae JE, Hwang SM, Aryal YP, Kim TY, Sohn WJ, An SY, Kim JY, An CH, Lee Y, Kim YG, Park JW, Lee JM, Kim JY, Suh JY. Effects of erythropoietin on osteoblast in the tooth extraction socket in mice periodontitis model. Front Physiol 2022; 13:987625. [PMID: 36277197 PMCID: PMC9582603 DOI: 10.3389/fphys.2022.987625] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Periodontitis is an excessive inflammatory event in tooth-supporting tissues and can cause tooth loss. We used erythropoietin (EPO), which has been reported to play an important role in bone healing and modulation of angiogenesis, as a therapeutic agent in vivo and in vitro experimental models to analyze its effect on periodontitis. First, EPO was applied to in vitro MC3T3-E1 cells and human periodontal ligament fibroblast (hPDLF) cells to examine its function in altered cellular events and gene expression patterns. In vitro cultivation of MC3T3-E1 and hPDLF cells with 10 IU/ml EPO at 24 and 48 h showed an obvious increase in cell proliferation. Interestingly, EPO treatment altered the expression of osteogenesis-related molecules, including alkaline phosphatase (ALP), bone morphogenetic protein-2 (BMP-2), and osteocalcin (OC) in MC3T3-E1 cells but not in hPDLF cells. In particular, MC3T3-E1 cells showed increased expression of ALP, BMP-2, and OC on day 5, while hPDLF cells showed increased expression of BMP-2, and OC on day 14. Based on the in vitro examination, we evaluated the effect of EPO on bone formation using an experimentally-induced animal periodontitis model. After the induction of periodontitis in the maxillary left second M, 10 IU/ml of EPO was locally applied to the extraction tooth sockets. Histomorphological examination using Masson’s trichrome (MTC) staining showed facilitated bone formation in the EPO-treated groups after 14 days. Similarly, stronger positive reactions against vascular endothelial growth factor (VEGF), cluster of differentiation 31 (CD31), runt-related transcription factor 2 (RUNX2), and osteocalcin (OC) were detected in the EPO-treated group compared to the control. Meanwhile, myeloperoxidase, an inflammatory marker, was decreased in the EPO-treated group on days 1 and 5. Overall, EPO facilitates bone healing and regeneration through altered signaling regulation and modulation of inflammation in the osteoblast cell lineage and to a lesser extent in hPDLF cells.
Collapse
Affiliation(s)
- Ju-Eun Bae
- Department of Periodontology, School of Dentistry, IHBR Kyungpook National University, Daegu, South Korea
| | - Sung-Min Hwang
- Department of Periodontology, School of Dentistry, IHBR Kyungpook National University, Daegu, South Korea
| | - Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, IHBR Kyungpook National University, Daegu, South Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR Kyungpook National University, Daegu, South Korea
| | - Wern-Joo Sohn
- Pre-Major of Cosmetics and Pharmaceutics, Daegu Haany University, Gyeongsan, South Korea
| | - Seo-Young An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR Kyungpook National University, Daegu, South Korea
| | - Ji-Youn Kim
- Department of Dental Hygiene, College of Health Science, Gachon University, Incheon, South Korea
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR Kyungpook National University, Daegu, South Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, IHBR Kyungpook National University, Daegu, South Korea
| | - Yong-Gun Kim
- Department of Periodontology, School of Dentistry, IHBR Kyungpook National University, Daegu, South Korea
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, IHBR Kyungpook National University, Daegu, South Korea
| | - Jae-Mok Lee
- Department of Periodontology, School of Dentistry, IHBR Kyungpook National University, Daegu, South Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR Kyungpook National University, Daegu, South Korea
- *Correspondence: Jae-Young Kim, ; Jo-Young Suh,
| | - Jo-Young Suh
- Department of Periodontology, School of Dentistry, IHBR Kyungpook National University, Daegu, South Korea
- *Correspondence: Jae-Young Kim, ; Jo-Young Suh,
| |
Collapse
|
2
|
Zhang H, Li X, Li J, Zhong L, Chen X, Chen S. SDF-1 mediates mesenchymal stem cell recruitment and migration via the SDF-1/CXCR4 axis in bone defect. J Bone Miner Metab 2021; 39:126-138. [PMID: 33079278 DOI: 10.1007/s00774-020-01122-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/27/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Recent studies have indicated the potential of stem cell therapy in combination with cytokines to restore the bone repair via migration and homing of stem cells to the defected area. The present study aimed to investigate the mobilization and recruitment of mesenchymal stem cells (MSCs) in response to SDF-1. MATERIALS AND METHODS Herein, the knockout rat model of the bone defect (BD) was treated with the induced membrane technique. Then, wild type Wistar rats and SDF-1-knockout rats were selected for the establishment of BD-induced membrane (BD-IM) models and bone-graft (BG) models. The number of MSCs was evaluated by flow cytometry, along with the expression pattern of the SDF-1/CXCR4 axis as well as osteogenic factors was identified by RT-qPCR and Western blot analyses. Finally, the MSC migration ability was assessed by the Transwell assay. RESULTS Our data illustrated that in the induced membrane tissues, the number of MSCs among the BD-IM modeled rats was increased, whereas, a lower number was documented among BG modeled rats. Besides, we found that lentivirus-mediated over-expression of SDF-1 in BG modeled rats could activate the SDF-1/CXCR4 axis, mobilize MSCs into the defect area, and up-regulate the osteogenic proteins. CONCLUSIONS Collectively, our study speculated that up-regulation of SDF-1 promotes the mobilization and migration of MSCs through the activation of the SDF-1/CXCR4 signal pathway.
Collapse
Affiliation(s)
- Heli Zhang
- Department of Outpatient, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Xijing Li
- Department of Emergency, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Junfeng Li
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Lili Zhong
- Jilin Provincial Key Laboratory On Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Xue Chen
- Department of Orthopedics, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China.
| | - Si Chen
- Department of Geriatric Medicine, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin, People's Republic of China.
| |
Collapse
|
3
|
Li D, Zhao L, Cong M, Liu L, Yan G, Li Z, Li B, Yu W, Sun H, Yang B. Injectable thermosensitive chitosan/gelatin-based hydrogel carried erythropoietin to effectively enhance maxillary sinus floor augmentation in vivo. Dent Mater 2020; 36:e229-e240. [PMID: 32471559 DOI: 10.1016/j.dental.2020.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/30/2020] [Accepted: 04/28/2020] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Maxillary sinus floor augmentation (MSFA) is commonly used to increase the alveolar bone height in the posterior maxilla before implant placement. In the present study, we evaluated if the injectable thermosensitive chitosan/β-sodium glycerophosphate disodium salt hydrate/gelatin (CS/GP/GA) hydrogel carried erythropoietin (EPO) could enhance the new bone formation for MSFA in vivo. METHODS EPO-CS/GP/GA hydrogel was prepared by ionic crosslinking. Then, characteristics of EPO-CS/GP/GA were evaluated by morphology, injectable property and pH on the gelling time (GT). The release profile of EPO was evaluated by enzyme linked immunosorbent assay (ELISA), and effects of EPO on proliferation and osteoblastic differentiation of bone marrow stromal cells (BMSC) were analyzed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and reverse transcription quantitative real-time PCR (RT-qPCR), respectively. Finally, EPO-CS/GP/GA was injected into the maxillary sinus floor of the rabbit to test the potential application for MSFA. RESULTS Results showed that GT was decreased with the increase of pH value. The GT was 110±15s at pH 7.0. SEM images showed that the CS/GP/GA hydrogel had a sponge network structure. Results from ELISA assay revealed that the cumulative release of EPO from the EPO-CS/GP/GA hydrogel reached 67% at 4h, and 94% at 15 days. MTT assay showed that EPO within EPO-CS/GP/GA hydrogel could significantly promote proliferation of BMSCs compared to control group (p<0.001) . Results of RT-qPCR assays demonstrated that the expression of Sp7, Runx2, Col I and Alp were significantly increased from EPO-CS/GP/GA group compared to control group on day 14 (p<0.001). Importantly, EPO-CS/GP/GA hydrogel could significantly induce bone formation (81.98mm3) compared with control group (43.11mm3) after 12 weeks post-implantation in vivo. The calculation of thickness of mesenchymal condensation indicated that thickness of mesenchymal condensation was significantly increased from EPO-CS/GP/GA group (∼121.4μm) compared to control group (∼37μm) resulting in enhancing intramembranous ossification. SIGNIFICANCE The EPO-CS/GP/GA hydrogel provides a novel strategy for MSFA with a minimally invasive way.
Collapse
Affiliation(s)
- Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Liang Zhao
- Affiliated Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Mingyu Cong
- Department of Statistics and Biostatistics, Rutgers University, NJ 08854, USA
| | - Lijun Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Guangxing Yan
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhimin Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Baoquan Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China.
| | - Weixian Yu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China.
| | - Hongchen Sun
- Liaoning Provincial Key Laboratory of Oral Disease, School of Stomatology, China Medical University, Shenyang, China.
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
4
|
Li D, Hu Q, Tan G, Xie X, Yang Z, Kang P. Erythropoietin Enhances Bone Repair Effects via the Hypoxia-Inducible Factor Signal Pathway in Glucocorticoid-Induced Osteonecrosis of the Femoral Head. Am J Med Sci 2018; 355:597-606. [PMID: 29891043 DOI: 10.1016/j.amjms.2018.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/03/2018] [Accepted: 03/06/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND This study aimed to determine whether erythropoietin could repair glucocorticoid-induced osteonecrosis of the femoral head after the systemic or local administration of recombinant human erythropoietin. MATERIALS AND METHODS Gelatin microspheres were used to load recombinant human erythropoietin for local delivery. Forty-eight Wistar rats were included in the glucocorticoid-induced osteonecrosis of the femoral head model and randomly divided into the placebo, systemic erythropoietin and local erythropoietin groups. Eight weeks later, all rats were killed and their tissues were subjected to radiographic, histological, histometric, quantitative polymerase chain reaction and western blot analyses. RESULTS Our results show that the use of recombinant human erythropoietin increased bone volume, trabecular number, trabecular thickness and trabecular separation compared with the placebo. Erythropoietin administration significantly improved the expression of runt-related transcription factor 2, alkaline phosphates, hypoxia-inducible factor-1α and vascular endothelial growth factor in the femoral head. We also found that the local injection of erythropoietin could better mediate hypoxia-inducible factor-1α-controlled osteogenic and angiogenic factor expression and better repair the glucocorticoid-induced osteonecrosis of the femoral head. CONCLUSIONS The use of recombinant human erythropoietin exerted effects on improving the bone structures in glucocorticoid-induced osteonecrosis of the femoral head and up-regulated the expression of runt-related transcription factor 2, alkaline phosphates, hypoxia-inducible factor-1α and vascular endothelial growth factor. It provided a novel idea that erythropoietin administration could repair glucocorticoid-induced osteonecrosis of the femoral head by improving bone formation and angiogenesis and may be associated with the hypoxia-inducible factor-1α pathway. The sequential delivery of erythropoietin from gelatin microspheres seems worth recommending.
Collapse
Affiliation(s)
- Donghai Li
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinsheng Hu
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Gang Tan
- Department of Orthopedics, Orthopedic Hospital of Mianyang, Mianyang, People's Republic of China
| | - Xiaowei Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhouyuan Yang
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Pengde Kang
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
5
|
Tassi SA, Sergio NZ, Misawa MYO, Villar CC. Efficacy of stem cells on periodontal regeneration: Systematic review of pre-clinical studies. J Periodontal Res 2017; 52:793-812. [PMID: 28394043 DOI: 10.1111/jre.12455] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2017] [Indexed: 01/10/2023]
Abstract
This systematic review aims to evaluate mesenchymal stem cells (MSC) periodontal regenerative potential in animal models. MEDLINE, EMBASE and LILACS databases were searched for quantitative pre-clinical controlled animal model studies that evaluated the effect of local administration of MSC on periodontal regeneration. The systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement guidelines. Twenty-two studies met the inclusion criteria. Periodontal defects were surgically created in all studies. In seven studies, periodontal inflammation was experimentally induced following surgical defect creation. Differences in defect morphology were identified among the studies. Autogenous, alogenous and xenogenous MSC were used to promote periodontal regeneration. These included bone marrow-derived MSC, periodontal ligament (PDL)-derived MSC, dental pulp-derived MSC, gingival margin-derived MSC, foreskin-derived induced pluripotent stem cells, adipose tissue-derived MSC, cementum-derived MSC, periapical follicular MSC and alveolar periosteal cells. Meta-analysis was not possible due to heterogeneities in study designs. In most of the studies, local MSC implantation was not associated with adverse effects. The use of bone marrow-derived MSC for periodontal regeneration yielded conflicting results. In contrast, PDL-MSC consistently promoted increased PDL and cementum regeneration. Finally, the adjunct use of MSC improved the regenerative outcomes of periodontal defects treated with membranes or bone substitutes. Despite the quality level of the existing evidence, the current data indicate that the use of MSC may provide beneficial effects on periodontal regeneration. The various degrees of success of MSC in periodontal regeneration are likely to be related to the use of heterogeneous cells. Thus, future studies need to identify phenotypic profiles of highly regenerative MSC populations.
Collapse
Affiliation(s)
- S A Tassi
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - N Z Sergio
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - M Y O Misawa
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - C C Villar
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil.,Department of Periodontics, University of Texas Health Science Center at San Antonio Dental School, San Antonio, TX, USA
| |
Collapse
|
6
|
Gautam P, Recino A, Foale RD, Zhao J, Gan SU, Wallberg M, Calne R, Lever AML. Promoter optimisation of lentiviral vectors for efficient insulin gene expression in canine mesenchymal stromal cells: potential surrogate beta cells. J Gene Med 2016; 18:312-321. [PMID: 27572655 DOI: 10.1002/jgm.2900] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/02/2016] [Accepted: 08/25/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The lack of an ideal cell type that can be easily acquired, modified to produce insulin, and re-implanted has been a limitation for ex vivo insulin gene therapy. Canine diabetes is currently treated with human insulin and is a good model for human diabetes. Mesenchymal stromal cells (MSCs) are a promising candidate cell type for gene therapy. In the present study, we optimised insulin production using lentiviral transduced canine MSCs (cMSCs), aiming to evaluate their ability for use as surrogate beta cells. METHODS Canine MSCs were derived from bone marrow and validated by measuring the expression of MSC lineage specific markers. Lentivirus vectors encoding the proinsulin gene (with or without a Kozak sequence) under the control of spleen focus forming virus, cytomegalovirus, elongation factor 1α and simian virus 40 promotors were generated and used to transduce primary cMSCs and a hepatocyte cell line. The insulin-producing capacity of transduced primary cMSCs was assessed by measuring the concentration of C-peptide produced. RESULTS Primary cMSC could be readily expanded in culture and efficiently transduced using lentiviral vectors encoding proinsulin. Increasing the multiplicity of infection from 3 to 20 led to an increase in C-peptide secretion (from 1700 to 4000 pmol/l). The spleen focus forming virus promoter conferred the strongest transcriptional ability. CONCLUSIONS The results of the present study suggest that optimised lentiviral transduction of the insulin gene into primary cMSCs renders these cells capable of secreting insulin over both the short- and long-term, in sufficient quantities in vitro to support their potential use in insulin gene therapy.
Collapse
Affiliation(s)
- Pratigya Gautam
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Asha Recino
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Robert D Foale
- Dick White Referrals, Station Farm, Six Mile Bottom, Suffolk, UK
| | - Jing Zhao
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Shu Uin Gan
- Department of Surgery, National Institute of Singapore, Singapore
| | - Maja Wallberg
- Dick White Referrals, Station Farm, Six Mile Bottom, Suffolk, UK
| | - Roy Calne
- Department of Surgery, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
7
|
Ordinary and Activated Bone Grafts: Applied Classification and the Main Features. BIOMED RESEARCH INTERNATIONAL 2015; 2015:365050. [PMID: 26649300 PMCID: PMC4662978 DOI: 10.1155/2015/365050] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 10/15/2015] [Indexed: 12/19/2022]
Abstract
Bone grafts are medical devices that are in high demand in clinical practice for substitution of bone defects and recovery of atrophic bone regions. Based on the analysis of the modern groups of bone grafts, the particularities of their composition, the mechanisms of their biological effects, and their therapeutic indications, applicable classification was proposed that separates the bone substitutes into “ordinary” and “activated.” The main differential criterion is the presence of biologically active components in the material that are standardized by qualitative and quantitative parameters: growth factors, cells, or gene constructions encoding growth factors. The pronounced osteoinductive and (or) osteogenic properties of activated osteoplastic materials allow drawing upon their efficacy in the substitution of large bone defects.
Collapse
|
8
|
Nowakowski A, Walczak P, Janowski M, Lukomska B. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine. Stem Cells Dev 2015; 24:2219-42. [PMID: 26140302 DOI: 10.1089/scd.2015.0062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.
Collapse
Affiliation(s)
- Adam Nowakowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| | - Piotr Walczak
- 2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,4 Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury , Olsztyn, Poland
| | - Miroslaw Janowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland .,2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Barbara Lukomska
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| |
Collapse
|