1
|
Alqurashi YE, Al-Hetty HRAK, Ramaiah P, Fazaa AH, Jalil AT, Alsaikhan F, Gupta J, Ramírez-Coronel AA, Tayyib NA, Peng H. Harnessing function of EMT in hepatocellular carcinoma: From biological view to nanotechnological standpoint. ENVIRONMENTAL RESEARCH 2023; 227:115683. [PMID: 36933639 DOI: 10.1016/j.envres.2023.115683] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 05/08/2023]
Abstract
Management of cancer metastasis has been associated with remarkable reduction in progression of cancer cells and improving survival rate of patients. Since 90% of mortality are due to cancer metastasis, its suppression can improve ability in cancer fighting. The EMT has been an underlying cause in increasing cancer migration and it is followed by mesenchymal transformation of epithelial cells. HCC is the predominant kind of liver tumor threatening life of many people around the world with poor prognosis. Increasing patient prognosis can be obtained via inhibiting tumor metastasis. HCC metastasis modulation by EMT and HCC therapy by nanoparticles are discussed here. First of all, EMT happens during progression and advanced stages of HCC and therefore, its inhibition can reduce tumor malignancy. Moreover, anti-cancer compounds including all-trans retinoic acid and plumbaging, among others, have been considered as inhibitors of EMT. The EMT association with chemoresistance has been evaluated. Moreover, ZEB1/2, TGF-β, Snail and Twist are EMT modulators in HCC and enhancing cancer invasion. Therefore, EMT mechanism and related molecular mechanisms in HCC are evaluated. The treatment of HCC has not been only emphasized on targeting molecular pathways with pharmacological compounds and since drugs have low bioavailability, their targeted delivery by nanoparticles promotes HCC elimination. Moreover, nanoparticle-mediated phototherapy impairs tumorigenesis in HCC by triggering cell death. Metastasis of HCC and even EMT mechanism can be suppressed by cargo-loaded nanoparticles.
Collapse
Affiliation(s)
- Yaser E Alqurashi
- Department of Biology, College of Science Al-zulfi, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | | | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
2
|
Guo D, Ma D, Liu P, Lan J, Liu Z, Liu Q. DNASE1L3 arrests tumor angiogenesis by impairing the senescence-associated secretory phenotype in response to stress. Aging (Albany NY) 2021; 13:9874-9899. [PMID: 33744849 PMCID: PMC8064203 DOI: 10.18632/aging.202740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/19/2021] [Indexed: 01/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most challenging and aggressive cancers with limited treatment options because of tumor heterogeneity. Tumor angiogenesis is a hallmark of HCC and is necessary for tumor growth and progression. DNA damage stress and its associated deoxyribonuclease1-like 3 (DNASE1L3) are involved in HCC progression. Here, we explored the influence mechanism of DNASE1L3 on tumor angiogenesis under DNA damage stress in vitro and in vivo. DNASE1L3 was found downregulated and negatively correlated with poor prognosis of resectable and unresectable HCC patients. The tissue microarray of HCC revealed the negative association between DNASE1L3 and cancer vasculature invasion. Mechanistically, DNASE1L3 was found to relieve cytoplasmic DNA accumulation under DNA damage stress in HCC cell lines, in turn cell senescence and senescence-associated secretory phenotype were arrested via the p53 and NF-κB signal pathway, and hence, tumor angiogenesis was impaired. Furthermore, we found that DNASE1L3 excised these functions by translocating to the nucleus and interacting with H2BE under DNA damage stress using co-immunoprecipitation and fluorescence resonance energy transfer assay. In conclusion, DNASE1L3 inhibits tumor angiogenesis via impairing the senescence-associated secretory phenotype in response to DNA damage stress.
Collapse
Affiliation(s)
- Deliang Guo
- Department of Hepatobiliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Dong Ma
- Department of Hepatobiliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Pengpeng Liu
- Department of Hepatobiliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Jianwei Lan
- Department of Hepatobiliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Zhisu Liu
- Department of Hepatobiliary Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Quanyan Liu
- Department of Hepatobiliary Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
3
|
Harnessing Extracellular Matrix Biology for Tumor Drug Delivery. J Pers Med 2021; 11:jpm11020088. [PMID: 33572559 PMCID: PMC7911184 DOI: 10.3390/jpm11020088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
The extracellular matrix (ECM) plays an active role in cell life through a tightly controlled reciprocal relationship maintained by several fibrous proteins, enzymes, receptors, and other components. It is also highly involved in cancer progression. Because of its role in cancer etiology, the ECM holds opportunities for cancer therapy on several fronts. There are targets in the tumor-associated ECM at the level of signaling molecules, enzyme expression, protein structure, receptor interactions, and others. In particular, the ECM is implicated in invasiveness of tumors through its signaling interactions with cells. By capitalizing on the biology of the tumor microenvironment and the opportunities it presents for intervention, the ECM has been investigated as a therapeutic target, to facilitate drug delivery, and as a prognostic or diagnostic marker for tumor progression and therapeutic intervention. This review summarizes the tumor ECM biology as it relates to drug delivery with emphasis on design parameters targeting the ECM.
Collapse
|
4
|
Chen H, Cheng H, Wu W, Li D, Mao J, Chu C, Liu G. The blooming intersection of transcatheter hepatic artery chemoembolization and nanomedicine. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Abstract
Metastasis, the dissemination of cancer cells from primary tumors, represents a major hurdle in the treatment of cancer. The epithelial-mesenchymal transition (EMT) has been studied in normal mammalian development for decades, and it has been proposed as a critical mechanism during cancer progression and metastasis. EMT is tightly regulated by several internal and external cues that orchestrate the shifting from an epithelial-like phenotype into a mesenchymal phenotype, relying on a delicate balance between these two stages to promote metastatic development. EMT is thought to be induced in a subset of metastatic cancer stem cells (MCSCs), bestowing this population with the ability to spread throughout the body and contributing to therapy resistance. The EMT pathway is of increasing interest as a novel therapeutic avenue in the treatment of cancer, and could be targeted to prevent tumor cell dissemination in early stage patients or to eradicate existing metastatic cells in advanced stages. In this review, we describe the sequence of events and defining mechanisms that take place during EMT, and how these interactions drive cancer cell progression into metastasis. We summarize clinical interventions focused on targeting various aspects of EMT and their contribution to preventing cancer dissemination.
Collapse
Affiliation(s)
- Mohini Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Nicolas Yelle
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Chitra Venugopal
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, L8S 4K1, Canada; Department of Surgery, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Sheila K Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, L8S 4K1, Canada; Department of Surgery, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada.
| |
Collapse
|
6
|
Dai Y, Xu C, Sun X, Chen X. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem Soc Rev 2017; 46:3830-3852. [PMID: 28516983 PMCID: PMC5521825 DOI: 10.1039/c6cs00592f] [Citation(s) in RCA: 624] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanovehicles can efficiently carry and deliver anticancer agents to tumour sites. Compared with normal tissue, the tumour microenvironment has some unique properties, such as vascular abnormalities, hypoxia and acidic pH. There are many types of cells, including tumour cells, macrophages, immune and fibroblast cells, fed by defective blood vessels in the solid tumour. Exploiting the tumour microenvironment can benefit the design of nanoparticles for enhanced therapeutic effectiveness. In this review article, we summarized the recent progress in various nanoformulations for cancer therapy, with a special emphasis on tumour microenvironment stimuli-responsive ones. Numerous tumour microenvironment modulation strategies with promising cancer therapeutic efficacy have also been highlighted. Future challenges and opportunities of design consideration are also discussed in detail. We believe that these tumour microenvironment modulation strategies offer a good chance for the practical translation of nanoparticle formulas into clinic.
Collapse
Affiliation(s)
- Yunlu Dai
- Centre for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen 361102, China. and Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | - Can Xu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | - Xiaolian Sun
- Centre for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen 361102, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
7
|
Kang Z, Xiao EH. Effect of transcatheter arterial chemoembolization on metastasis potential of hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2015; 23:3182-3187. [DOI: 10.11569/wcjd.v23.i20.3182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transcatheter arterial chemoembolization (TACE) is an important treatment method for advanced hepatocellular carcinoma (HCC), but whether it promotes the metastasis potential of HCC is still controversial. TACE can inhibit tumor cell proliferation, promote tumor cell apoptosis, increase the expression of tumor-suppressor factors, and decrease the expression of some tumor angiogenesis factors, thus benefiting HCC patients and decreasing the metastasis potential of HCC. However, TACE could increase the expression of some angiogenesis factors, change the hemodynamics of HCC, and bring some adverse impacts on patients' immune system and HBV load, which could potentially lead to HCC metastasis. This review summarizes the impacts of TACE on tumor cells, tumor hemodynamics, angiogenesis, immune function and HBV load, with an aim to elucidate the effect of TACE on HCC metastasis potential.
Collapse
|