1
|
Ding W, Wang D, Cai M, Yan Y, Liu S, Liu X, Luo A, Deng D, Liu X, Jiang H. PIWIL1 gene polymorphism and pediatric acute lymphoblastic leukemia relapse susceptibility among Chinese children: a five-center case-control study. Front Oncol 2023; 13:1203002. [PMID: 38023199 PMCID: PMC10652278 DOI: 10.3389/fonc.2023.1203002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Objective PIWIL1 polymorphisms' role in pediatric acute lymphoblastic leukemia (ALL) relapse susceptibility remains undiscovered. Methods A case-control designed and multiple logistic regression model was performed to evaluate the overall risk of pediatric ALL and five single-nucleotide polymorphisms (SNPs) of PIWIL1 gene (rs35997018 C>T, rs1106042 A>G, rs7957349 C>G, rs10773771 C>T, and rs10848087 A>G) in 785 cases and 1,323 controls, which were genotyped by TaqMan assay. The odds ratio (OR) and its 95% confidence interval (CI) were used to estimate the relationship. Stratified analysis was used to investigate the correlation of rs1106042 and rs10773771 genotypes and pediatric ALL relapse susceptibility in terms of age, sex, number of white blood cells (WBC), immunophenotyping, gene fusion type, karyotype, primitive/naïve lymphocytes, and minimal residual disease (MRD) in bone marrow. Finally, the haplotype analysis was performed to appraise the relationship between inferred haplotypes of PIWIL1 and pediatric ALL risk. Results Among the five analyzed SNPs, rs1106042 A>G was related to increased ALL risk, and rs10773771 C>T was related to decreased ALL risk. Compared to the GG genotype, the rs1106042 GA/AA had a deleterious effect on children of age <120 months, who were female and male, had high or average number of WBC, pro-B ALL, pre-B ALL, T-ALL, low- and middle-risk ALL, E2A-PBX fusion gene, non-gene fusion, abnormal diploid, high hyperdiploid, hypodiploid, and normal diploid. Moreover, rs1106042 A>G harmfully affected primitive/naïve lymphocytes and MRD on days 15-19, day 33, and week 12. On the contrary, rs10773771 TC/CC exhibited a protective effect on ALL children with the TEL-AML fusion gene. Haplotype analysis demonstrated that haplotypes CAGT, TACC, TACT, and TAGT were significantly associated with increased pediatric ALL relapse susceptibility. Conclusion PIWIL1 rs1106042 A>G was related to increased ALL risk, and rs10773771 C>T was linked to decreased ALL risk in eastern Chinese children. Rs1106042 GA/AA may predict poor prognosis.
Collapse
Affiliation(s)
- Wenjiao Ding
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Dao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mansi Cai
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yaping Yan
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Shanshan Liu
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Xiaodan Liu
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Ailing Luo
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Decheng Deng
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Xiaoping Liu
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Hua Jiang
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Ghazimoradi MH, Karimpour-Fard N, Babashah S. The Promising Role of Non-Coding RNAs as Biomarkers and Therapeutic Targets for Leukemia. Genes (Basel) 2023; 14:131. [PMID: 36672872 PMCID: PMC9859176 DOI: 10.3390/genes14010131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Early-stage leukemia identification is crucial for effective disease management and leads to an improvement in the survival of leukemia patients. Approaches based on cutting-edge biomarkers with excellent accuracy in body liquids provide patients with the possibility of early diagnosis with high sensitivity and specificity. Non-coding RNAs have recently received a great deal of interest as possible biomarkers in leukemia due to their participation in crucial oncogenic processes such as proliferation, differentiation, invasion, apoptosis, and their availability in body fluids. Recent studies have revealed a strong correlation between leukemia and the deregulated non-coding RNAs. On this basis, these RNAs are also great therapeutic targets. Based on these advantages, we tried to review the role of non-coding RNAs in leukemia. Here, the significance of several non-coding RNA types in leukemia is highlighted, and their potential roles as diagnostic, prognostic, and therapeutic targets are covered.
Collapse
Affiliation(s)
- Mohammad H. Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Naeim Karimpour-Fard
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| |
Collapse
|
3
|
Chattopadhyay T, Biswal P, Lalruatfela A, Mallick B. Emerging roles of PIWI-interacting RNAs (piRNAs) and PIWI proteins in head and neck cancer and their potential clinical implications. Biochim Biophys Acta Rev Cancer 2022; 1877:188772. [PMID: 35931391 DOI: 10.1016/j.bbcan.2022.188772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 02/08/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) are among the well-known neoplasms originating in the oral cavity, pharynx, and larynx. Despite advancements in chemotherapy, radiotherapy, and surgery, the survival rates of the patients are low, which has posed a major therapeutic challenge. A growing number of non-coding RNAs (ncRNAs), for instance, microRNAs, have been identified whose abnormal expression patterns have been implicated in HNSCC. However, more recently, several seminal research has shown that piwi-interacting RNAs (piRNAs), a promising and young class of small ncRNA, are linked to the emergence and progression of cancer. They can regulate transposable elements (TE) and gene expression through multiple mechanisms, making them potentially more powerful regulators than miRNAs. Hence, they can be more promising ncRNAs candidates for cancer therapeutic intervention. Here, we surveyed the roles and clinical implications of piRNAs and their PIWI proteins partners in tumorigenesis and associated molecular processes of cancer, with a particular focus on HNSCC, to offer a new avenue for diagnosis, prognosis, and therapeutic interventions for the malignancy, improving patient's outcomes.
Collapse
Affiliation(s)
- Trisha Chattopadhyay
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Priyajit Biswal
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Anthony Lalruatfela
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
4
|
Mukherjee P, Bhattacharjee S, Mandal DP. PIWI-interacting RNA (piRNA): a narrative review of its biogenesis, function, and emerging role in lung cancer. ASIAN BIOMED 2022; 16:3-14. [PMID: 37551397 PMCID: PMC10321162 DOI: 10.2478/abm-2022-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cancer remains elusive in many aspects, especially in its causes and control. After protein profiling, genetic screening, and mutation studies, scientists now have turned their attention to epigenetic modulation. This new arena has brought to light the world of noncoding RNA (ncRNA). Although very complicated and often confusing, ncRNA domains are now among the most attractive molecular markers for epigenetic control of cancer. Long ncRNA and microRNA (miRNA) have been studied best among the noncoding genome and huge data have accumulated regarding their inhibitory and promoting effects in cancer. Another sector of ncRNAs is the world of PIWI-interacting RNAs (piRNAs). Initially discovered with the asymmetric division of germline stem cells in the Drosophila ovary, piRNAs have a unique capability to associate with mammalian proteins analogous to P-element induced wimpy testis (PIWI) in Drosophila and are capable of silencing transposons. After a brief introduction to its discovery timelines, the present narrative review covers the biogenesis, function, and role of piRNAs in lung cancer. The effects on lung cancer are highlighted under sections of cell proliferation, stemness maintenance, metastasis, and overall survival, and the review concludes with a discussion of recent discoveries of another class of small ncRNAs, the piRNA-like RNAs (piR-Ls).
Collapse
Affiliation(s)
- Pritha Mukherjee
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata700126, West Bengal, India
| | - Shamee Bhattacharjee
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata700126, West Bengal, India
| | - Deba Prasad Mandal
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, Barasat, Kolkata700126, West Bengal, India
| |
Collapse
|
5
|
Dong P, Xiong Y, Konno Y, Ihira K, Xu D, Kobayashi N, Yue J, Watari H. Critical Roles of PIWIL1 in Human Tumors: Expression, Functions, Mechanisms, and Potential Clinical Implications. Front Cell Dev Biol 2021; 9:656993. [PMID: 33718392 PMCID: PMC7952444 DOI: 10.3389/fcell.2021.656993] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/11/2021] [Indexed: 11/17/2022] Open
Abstract
P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a class of small non-coding RNA molecules that are 24-31 nucleotides in length. PiRNAs are thought to bind to PIWI proteins (PIWL1-4, a subfamily of Argonaute proteins), forming piRNA/PIWI complexes that influence gene expression at the transcriptional or post-transcriptional levels. However, it has been recently reported that the interaction of PIWI proteins with piRNAs does not encompass the entire function of PIWI proteins in human tumor cells. PIWIL1 (also called HIWI) is specifically expressed in the testis but not in other normal tissues. In tumor tissues, PIWIL1 is frequently overexpressed in tumor tissues compared with normal tissues. Its high expression is closely correlated with adverse clinicopathological features and shorter patient survival. Upregulation of PIWIL1 drastically induces tumor cell proliferation, epithelial-mesenchymal transition (EMT), invasion, cancer stem-like properties, tumorigenesis, metastasis and chemoresistance, probably via piRNA-independent mechanisms. In this article, we summarize the current existing literature on PIWIL1 in human tumors, including its expression, biological functions and regulatory mechanisms, providing new insights into how the dysregulation of PIWIL1 contributes to tumor initiation, development and chemoresistance through diverse signaling pathways. We also discuss the most recent findings on the potential clinical applications of PIWIL1 in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ying Xiong
- State Key Laboratory of Oncology in South China, Department of Gynecology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yosuke Konno
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kei Ihira
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daozhi Xu
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Noriko Kobayashi
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Chang Z, Ji G, Huang R, Chen H, Gao Y, Wang W, Sun X, Zhang J, Zheng J, Wei Q. PIWI-interacting RNAs piR-13643 and piR-21238 are promising diagnostic biomarkers of papillary thyroid carcinoma. Aging (Albany NY) 2020; 12:9292-9310. [PMID: 32428871 PMCID: PMC7288952 DOI: 10.18632/aging.103206] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/17/2020] [Indexed: 04/11/2023]
Abstract
Emerging studies demonstrate that PIWI-interacting RNAs (piRNAs) participate in the development of cancers. 75 pairs of papillary thyroid carcinoma (PTC) samples and 31 benign thyroid nodule samples were included in this three-phase biomarker identifying study. First, piRNA expression profiles of five pairs of PTC samples were acquired piRNA sequencing. The expression of all upregulated piRNAs were further validated by RT-qPCR. Paired t and nonparametric test were used to evaluate the association between all upregulated piRNAs and clinic stage. The expression levels of key piRNAs were corrected by demographic data to construct a multivariate model to distinguish malignant nodules from benign. Additionally, the intersection between target genes of key piRNAs and differentially expressed genes in The Cancer Genome Atlas (TCGA) PTC samples were used to perform enrichment analysis. Only piR-13643 and piR-21238 were significantly upregulated in PTC and associated with clinic stage. Moreover, both piR-13643 (Area Under Curve (AUC): 0.821) and piR-21238 (AUC: 0.823) showed better performance in distinguishing malignant nodules from benign than currently used biomarkers HBME1 (AUC: 0.590). Based on our findings, piR-13643 and piR-21238 were observed to be significantly upregulated in human PTC. PIWI-interacting RNAs could serve as promising novel biomarkers for accurate detection of PTC.
Collapse
Affiliation(s)
- Zhengyan Chang
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai
| | - Guo Ji
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai
| | - Runzhi Huang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
| | - Hong Chen
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yaohui Gao
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai
| | - Weifeng Wang
- Central Laboratory, Shanghai Tenth People's Hospital, Shanghai, China
| | - Xuechen Sun
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai
| | - Jie Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Department of Prevention, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Jiayi Zheng
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai
- Human Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai
| |
Collapse
|
7
|
Li W, Martinez-Useros J, Garcia-Carbonero N, Fernandez-Aceñero MJ, Orta A, Ortega-Medina L, Garcia-Botella S, Perez-Aguirre E, Diez-Valladares L, Celdran A, García-Foncillas J. The Clinical Significance of PIWIL3 and PIWIL4 Expression in Pancreatic Cancer. J Clin Med 2020; 9:1252. [PMID: 32357464 PMCID: PMC7287605 DOI: 10.3390/jcm9051252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022] Open
Abstract
P-element-induced wimpy testis (PIWI) proteins have been described in several cancers. PIWIL1 and PIWIL2 have been recently evaluated in pancreatic cancer, and elevated expression of PIWIL2 conferred longer survival to patients. However, PIWIL3's and PIWIL4's role in carcinogenesis is rather controversial, and their clinical implication in pancreatic cancer has not yet been investigated. In the present study, we evaluated PIWIL1, PIWIL2, PIWIL3 and PIWIL4 expression in pancreatic cancer-derived cell lines and in one non-tumor cell line as healthy control. Here, we show a differential expression in tumor and non-tumor cell lines of PIWIL3 and PIWIL4. Subsequently, functional experiments with PIWIL3 and/or PIWIL4 knockdown revealed a decrease in the motility ratio of tumor and non-tumor cell lines through downregulation of mesenchymal factors in pro of epithelial factors. We also observed that PIWIL3 and/or PIWIL4 silencing impaired undifferentiated phenotype and enhanced drug toxicity in both tumor- and non-tumor-derived cell lines. Finally, PIWIL3 and PIWIL4 evaluation in human pancreatic cancer samples showed that patients with low levels of PIWIL4 protein expression presented poor prognosis. Therefore, PIWIL3 and PIWIL4 proteins may play crucial roles to keep pancreatic cell homeostasis not only in tumors but also in healthy tissues.
Collapse
Affiliation(s)
- Weiyao Li
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain; (W.L.); (N.G.-C.); (A.O.)
| | - Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain; (W.L.); (N.G.-C.); (A.O.)
| | - Nuria Garcia-Carbonero
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain; (W.L.); (N.G.-C.); (A.O.)
| | | | - Alberto Orta
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain; (W.L.); (N.G.-C.); (A.O.)
| | - Luis Ortega-Medina
- Pathology Department, Clinico San Carlos University Hospital, C/Profesor Martin Lagos, 28040 Madrid, Spain;
| | - Sandra Garcia-Botella
- Surgery Department (Pancreatobiliary Unit), Hospital Clínico San Carlos, C/Profesor Martin Lagos, 28040 Madrid, Spain; (S.G.-B.); (E.P.-A.); (L.D.-V.)
| | - Elia Perez-Aguirre
- Surgery Department (Pancreatobiliary Unit), Hospital Clínico San Carlos, C/Profesor Martin Lagos, 28040 Madrid, Spain; (S.G.-B.); (E.P.-A.); (L.D.-V.)
| | - Luis Diez-Valladares
- Surgery Department (Pancreatobiliary Unit), Hospital Clínico San Carlos, C/Profesor Martin Lagos, 28040 Madrid, Spain; (S.G.-B.); (E.P.-A.); (L.D.-V.)
| | - Angel Celdran
- Hepatobiliary and Pancreatic Surgery Unit, General and Digestive Tract Surgery Department, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain;
| | - Jesús García-Foncillas
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain; (W.L.); (N.G.-C.); (A.O.)
| |
Collapse
|
8
|
Li W, Martinez-Useros J, Garcia-Carbonero N, Fernandez-Aceñero MJ, Ortega-Medina L, Garcia-Botella S, Perez-Aguirre E, Diez-Valladares L, Garcia-Foncillas J. The Prognosis Value of PIWIL1 and PIWIL2 Expression in Pancreatic Cancer. J Clin Med 2019; 8:E1275. [PMID: 31443431 PMCID: PMC6780139 DOI: 10.3390/jcm8091275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/12/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is a highly aggressive manifestation of cancer, and currently presents poor clinical outcome due to its late diagnosis with metastasic disease. Surgery is the only approach with a curative intend; however, the survival rates seen in this type of patient are still low. After surgery, there is a lack of predictive prognosis biomarkers to predict treatment response and survival to establish a personalized medicine. Human P-element-induced wimpy testis 1 (PIWIL1) and P-element-induced wimpy testis 2 (PIWIL2) proteins act as protectors of germline, and their aberrant expression has been described in several types of tumors. In this study, we aimed to assess an association between PIWIL1 and PIWIL2 expression and the prognosis of biliopancreatic cancer patients. For this, we analyzed protein expression in complete resected tumor samples, and found a significant association between PIWIL2 expression and both progression-free and overall survival (p = 0.036 and p = 0.012, respectively). However, PIWIL2 expression was significantly associated with progression-free survival (p = 0.029), and overall survival (p = 0.025) of such tumors originated in the pancreas, but not in the bile duct or ampulla of Vater. Further analysis revealed that PIWIL1 and PIWIL2, at both mRNA and protein expression levels, correlated positively with factors associated to the progenitor molecular subtype of pancreatic cancer. Based on these findings, PIWIL1 and PIWIL2 expression may be considered a potential prognostic biomarker for resectable pancreatic cancer and may serve to guide subsequent adjuvant treatment decisions.
Collapse
Affiliation(s)
- Weiyao Li
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain.
| | - Nuria Garcia-Carbonero
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Maria J Fernandez-Aceñero
- Pathology Department, University Hospital Gregorio Marañon, C/del Dr. Esquerdo 46, 28007 Madrid, Spain
| | - Luis Ortega-Medina
- Pathology Department, Clinico San Carlos University Hospital, C/Profesor Martin Lagos, 28040 Madrid, Spain
| | - Sandra Garcia-Botella
- Surgery Department (Pancreatobiliary Unit), Hospital Clínico San Carlos, C/Profesor Martin Lagos, 28040 Madrid, Spain
| | - Elia Perez-Aguirre
- Surgery Department (Pancreatobiliary Unit), Hospital Clínico San Carlos, C/Profesor Martin Lagos, 28040 Madrid, Spain
| | - Luis Diez-Valladares
- Surgery Department (Pancreatobiliary Unit), Hospital Clínico San Carlos, C/Profesor Martin Lagos, 28040 Madrid, Spain
| | - Jesus Garcia-Foncillas
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain.
| |
Collapse
|
9
|
Weng W, Li H, Goel A. Piwi-interacting RNAs (piRNAs) and cancer: Emerging biological concepts and potential clinical implications. Biochim Biophys Acta Rev Cancer 2018; 1871:160-169. [PMID: 30599187 DOI: 10.1016/j.bbcan.2018.12.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/09/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022]
Abstract
Piwi-interacting RNAs (piRNAs) are a very recently discovered class of small non-coding RNAs (ncRNAs), with approximately 20,000 piRNA genes already identified within the human genome. These short RNAs were originally described as key functional regulators for the germline maintenance and transposon silencing. However, due to our limited knowledge regarding their function, piRNAs were for a long time assumed to be the "dark matter" of ncRNAs in our genome. However, recent evidence has now changed our viewpoint of their biological and clinical significance in various diseases, as newly emerging data reveals that aberrant expression of piRNAs is a unique and distinct feature in many diseases, including multiple human cancers. Furthermore, their altered expression in cancer patients has been significantly associated with clinical outcomes, highlighting their important biological functional role in disease progression. Functionally, piRNAs maintain genomic integrity by silencing transposable elements, and are capable of regulating the expression of specific downstream target genes in a post-transcriptional manner. Moreover, accumulating evidences demonstrates that analogous to other small ncRNAs (e.g. miRNAs) piRNAs have both oncogenic and tumor suppressive roles in cancer development. In this article, we discuss emerging insights into roles of piRNAs in a variety of cancers, reveal new findings underpinning various mechanisms of piRNAs-mediated gene regulation, and highlight their potential clinical significance in the management of cancer patients.
Collapse
Affiliation(s)
- Wenhao Weng
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China; Center for Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Hanhua Li
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, TX 75246-2017, USA.
| |
Collapse
|
10
|
Li H, Shi CX, Liu H, Zhang HH, Sang HM, Soyfoo MD, Cao JL, Xu SF, Jiang JX. Hiwi overexpression does not affect proliferation, migration or apoptosis of liver cancer cells in vitro or in vivo. Oncol Lett 2018; 15:9711-9718. [PMID: 29928347 PMCID: PMC6004705 DOI: 10.3892/ol.2018.8585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 03/16/2018] [Indexed: 11/27/2022] Open
Abstract
Piwi like RNA-mediated gene silencing 1 (Hiwi) is a human homolog of the Piwi gene family that has been reported to be upregulated in hepatocellular carcinoma (HCC). The present study aimed to investigate the role of Hiwi in the initiation and development of HCC in vitro and in vivo. Adenovirus-mediated Hiwi overexpression was established in primary murine hepatocytes and SMMC7721 HCC cells. Cell viability and proliferation were assessed using MTT and EdU assays, respectively. Cell migration was measured using a scratch migration assay. The cell cycle was assessed using flow cytometry, and the expression of genes associated with the epithelial mesenchymal transition (EMT) was assessed using reverse transcription-quantitative polymerase chain reaction. SMMC7721 cells that stably express Hiwi were also generated and injected subcutaneously into the nude mice, and tumor growth was examined. Recombinant adenovirus encoding green fluorescent protein or Hiwi was delivered by injection into the tail vein, and its effect on murine hepatocyte gene expression was studied. The present study revealed that the overexpression of Hiwi did not affect the proliferation or migration of liver cancer cells and failed to suppress perifosine- or doxorubicin-induced apoptosis in vitro. The tumors of mice that were injected with Hiwi-expressing SMMC7721 cells were not significantly larger compared with mice that were injected with control SMMC7721 cells. Hiwi overexpression did not noticeably alter the expression of genes involved in EMT, either in vitro or in vivo. The results of the present study indicate that although expression of Hiwi is associated with HCC development and progression in the clinic, it does not act as an oncogene in liver cancer cells.
Collapse
Affiliation(s)
- Hao Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Chen-Xi Shi
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Hui Liu
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Hai-Han Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Huai-Ming Sang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Muhammad-Djaleel Soyfoo
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jiu-Liang Cao
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shun-Fu Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jian-Xia Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
11
|
Liu A, Liu S. Noncoding RNAs in Growth and Death of Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:137-72. [DOI: 10.1007/978-981-10-1498-7_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|