1
|
Limanówka P, Ochman B, Świętochowska E. Mechanisms Behind the Impact of PIWI Proteins on Cancer Cells: Literature Review. Int J Mol Sci 2024; 25:12217. [PMID: 39596284 PMCID: PMC11594409 DOI: 10.3390/ijms252212217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The P-Element-induced wimpy testis (PIWI) group of proteins plays a key role in RNA interference, particularly in the regulation of small non-coding RNAs. However, in recent years, PIWIs have gained attention in several diseases, mainly cancer. Therefore, the aim of this review was to evaluate current knowledge about the impact of PIWI proteins on cancer cells. PIWIs alter a number of pathways within cells, resulting in significant changes in cell behavior. Basic processes of cancer cells have been shown to be altered by either overexpression or inhibition of PIWIs. Regulation of apoptosis, metastasis, invasion, or proliferation of cancerous cells by these proteins proves their involvement in the progression of the malignancy. It has been revealed that PIWIs are also connected with cancer stem cells (CSCs), which proves their ability to become a therapeutic target. However, research on this topic is still fairly limited, and with significant differences between cancer types, it is necessary to refrain from making any decisive conclusions.
Collapse
Affiliation(s)
| | | | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (P.L.); (B.O.)
| |
Collapse
|
2
|
Garcia-Silva MR, Márquez ME, Pinello N. PIWI pathway: bridging acute myeloid leukemia stemness and cellular differentiation. Front Cell Dev Biol 2024; 12:1449353. [PMID: 39188528 PMCID: PMC11345186 DOI: 10.3389/fcell.2024.1449353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
PIWI proteins are stem cell-associated RNA-binding proteins crucial for survival of germ stem cells. In cancer, PIWI proteins are overexpressed. Specifically, PIWIL4 is highly expressed in multiple cancers with the highest levels found in acute myeloid leukemia (AML), an aggressive malignancy propagated by a population of leukemia stem cells (LSCs). Bamezai et al. (Blood Journal, blood, 2023, 142, 90-105) demonstrated that PIWIL4 supports AML blasts and LSCs but is not necessary for healthy human hematopoietic progenitor stem cells (HSPCs) function in vivo. PIWIL4 in AML acts by preventing the accumulation of R-loops in key genes for LSCs persistence implicated in: DNA damage, replicative stress, and transcription arrest. We report that PIWIL4 expression significantly decreases in THP-1 monocytes exposed to a differentiating agent, suggesting a potential role for PIWIL4 in maintaining the undifferentiated state of myeloid cells. PIWIL4 overexpression could lead to the emergence of LSCs, driving leukemia propagation and maintenance. Our findings correlate with the persistent overexpression of PIWIL4 in myeloid cancers as reported by Bamezai et al., and suggest that PIWIL4 may be involved in myeloid cell differentiation. In this perspective, we highlight recent findings on the implication of PIWI pathway in maintaining AML stemness. Additionally, we propose further investigation on the role of PIWI pathway in oncogenesis and cellular differentiation as a strategy to identify biomarkers and therapeutic targets for AML.
Collapse
Affiliation(s)
- M. R. Garcia-Silva
- Functional Genomics Laboratory, Institut Pasteur Montevideo, Montevideo, Uruguay
| | | | | |
Collapse
|
3
|
Ding W, Wang D, Cai M, Yan Y, Liu S, Liu X, Luo A, Deng D, Liu X, Jiang H. PIWIL1 gene polymorphism and pediatric acute lymphoblastic leukemia relapse susceptibility among Chinese children: a five-center case-control study. Front Oncol 2023; 13:1203002. [PMID: 38023199 PMCID: PMC10652278 DOI: 10.3389/fonc.2023.1203002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Objective PIWIL1 polymorphisms' role in pediatric acute lymphoblastic leukemia (ALL) relapse susceptibility remains undiscovered. Methods A case-control designed and multiple logistic regression model was performed to evaluate the overall risk of pediatric ALL and five single-nucleotide polymorphisms (SNPs) of PIWIL1 gene (rs35997018 C>T, rs1106042 A>G, rs7957349 C>G, rs10773771 C>T, and rs10848087 A>G) in 785 cases and 1,323 controls, which were genotyped by TaqMan assay. The odds ratio (OR) and its 95% confidence interval (CI) were used to estimate the relationship. Stratified analysis was used to investigate the correlation of rs1106042 and rs10773771 genotypes and pediatric ALL relapse susceptibility in terms of age, sex, number of white blood cells (WBC), immunophenotyping, gene fusion type, karyotype, primitive/naïve lymphocytes, and minimal residual disease (MRD) in bone marrow. Finally, the haplotype analysis was performed to appraise the relationship between inferred haplotypes of PIWIL1 and pediatric ALL risk. Results Among the five analyzed SNPs, rs1106042 A>G was related to increased ALL risk, and rs10773771 C>T was related to decreased ALL risk. Compared to the GG genotype, the rs1106042 GA/AA had a deleterious effect on children of age <120 months, who were female and male, had high or average number of WBC, pro-B ALL, pre-B ALL, T-ALL, low- and middle-risk ALL, E2A-PBX fusion gene, non-gene fusion, abnormal diploid, high hyperdiploid, hypodiploid, and normal diploid. Moreover, rs1106042 A>G harmfully affected primitive/naïve lymphocytes and MRD on days 15-19, day 33, and week 12. On the contrary, rs10773771 TC/CC exhibited a protective effect on ALL children with the TEL-AML fusion gene. Haplotype analysis demonstrated that haplotypes CAGT, TACC, TACT, and TAGT were significantly associated with increased pediatric ALL relapse susceptibility. Conclusion PIWIL1 rs1106042 A>G was related to increased ALL risk, and rs10773771 C>T was linked to decreased ALL risk in eastern Chinese children. Rs1106042 GA/AA may predict poor prognosis.
Collapse
Affiliation(s)
- Wenjiao Ding
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Dao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mansi Cai
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yaping Yan
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Shanshan Liu
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Xiaodan Liu
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Ailing Luo
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Decheng Deng
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Xiaoping Liu
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Hua Jiang
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Province Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Neurospora crassa is a potential source of anti-cancer agents against breast cancer. Breast Cancer 2022; 29:1032-1041. [PMID: 35881300 DOI: 10.1007/s12282-022-01383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022]
Abstract
Fungi are an excellent source of pharmaceuticals including anti-tumor agents. Neurospora crassa generates metabolites with diverse structural classes, however, its potential as an anti-tumor agent source has not been explored. The purpose of this study aimed to investigate the potential of Neurospora crassa mixture against breast cancer. The in vitro T-47D and MDA-MB-231 experiments showed that N. crassa mixture at the concentrations of both 1.7 and 0.85 µg/ml significantly inhibited tumor cell proliferation, migration and invasion, and 3D spheroid formation. However, the inhibition rates of MCF-10A ranged 10-20% at concentrations of 0.85 and 1.7 µg/ml. The mixture at the concentration of 0.85 µg/ml could significantly downregulate the expressions of transcription factors of E2F1 and E2F3, cancer stem cell-related genes of LIN28, HIWI, and CD133, and onco-lncRNA HOTAIR, and increase CASP3 activity in either T-47D or MDA-MD-231 breast cancer cell lines. In vivo breast cancer C3H mouse model results showed that N. crassa mixture significantly inhibited tumor growth. These findings suggest that N. crassa contains an antitumor component(s) against breast cancer invasiveness, which may inhibit the self-renewal and differentiation of breast cancer stem cells possibly by downregulating cancer stem cell-associated and/or transcription factor genes and oncogenes, and promoting apoptosis.
Collapse
|
5
|
Merkerova MD, Krejcik Z. Transposable elements and Piwi‑interacting RNAs in hemato‑oncology with a focus on myelodysplastic syndrome (Review). Int J Oncol 2021; 59:105. [PMID: 34779490 DOI: 10.3892/ijo.2021.5285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/12/2021] [Indexed: 11/06/2022] Open
Abstract
Our current understanding of hematopoietic stem cell differentiation and the abnormalities that lead to leukemogenesis originates from the accumulation of knowledge regarding protein‑coding genes. However, the possible impact of transposable element (TE) mobilization and the expression of P‑element‑induced WImpy testis‑interacting RNAs (piRNAs) on leukemogenesis has been beyond the scope of scientific interest to date. The expression profiles of these molecules and their importance for human health have only been characterized recently due to the rapid progress of high‑throughput sequencing technology development. In the present review, current knowledge on the expression profile and function of TEs and piRNAs was summarized, with specific focus on their reported involvement in leukemogenesis and pathogenesis of myelodysplastic syndrome.
Collapse
Affiliation(s)
| | - Zdenek Krejcik
- Institute of Hematology and Blood Transfusion, 128 20 Prague, Czech Republic
| |
Collapse
|
6
|
Tiliroside as a CAXII inhibitor suppresses liver cancer development and modulates E2Fs/Caspase-3 axis. Sci Rep 2021; 11:8626. [PMID: 33883691 PMCID: PMC8060393 DOI: 10.1038/s41598-021-88133-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/10/2021] [Indexed: 12/29/2022] Open
Abstract
Liver cancer is the fatal cause of cancer deaths worldwide due to its aggressiveness and lack of effective therapies. Tiliroside (C30H26O13) is an active compound extracted from herb plant Tribulus terrestris L., which has been used as alternative therapy in clinic practice. However, its therapeutic use against liver cancer has not been previously reported. Here, we showed that Tiliroside exerted significantly higher anti-proliferation effect on liver cancer cell lines Hep3B and SNU-449 than on liver normal cell THLE-3 cells or NC group, respectively, by using MTS assay. Results from colony formation, immigration and invasion assays support the anticancer efficacy of Tiliroside and its low-toxic property while treating liver normal cell THLE-3. 3D spheroid formation and CD133 expression level also displays its anti-stemness effect. It has been showed that Tiliroside may function as Carbonic anhydrases XII (CAXII) inhibitor and affects apoptotic E2F1/E2F3/Caspase-3 axis by using CAXII esterase activity assay, Human carbonic anhydrase 12 (CA-12) ELISA Kit, quantitative reverse transcription PCR (RT-qPCR) as well as CaspACE Assay System, respectively. In summary, we demonstrate for the first time that Tiliroside suppresses liver cancer development possibly by acting as a novel CAXII inhibitor, which warrant further investigation on its therapeutic implications.
Collapse
|
7
|
Zargari S, Negahban Khameneh S, Rad A, Forghanifard MM. MEIS1 promotes expression of stem cell markers in esophageal squamous cell carcinoma. BMC Cancer 2020; 20:789. [PMID: 32819319 PMCID: PMC7441725 DOI: 10.1186/s12885-020-07307-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND MEIS1 (Myeloid ecotropic viral integration site 1) as a homeobox (HOX) transcription factor plays regulatory roles in a variety of cellular processes including development, differentiation, survival, apoptosis and hematopoiesis, as well as stem cell regulation. Few studies have established pluripotency and self-renewal regulatory roles for MEIS1 in human esophageal squamous cell carcinoma (ESCC), and our aim in this study was to evaluate the functional correlation between MEIS1 and the stemness markers in ESCC patients and cell line KYSE-30. METHODS Expression pattern of MEIS1 and SALL4 gene expression was analyzed in different pathological features of ESCC patients. shRNA in retroviral vector was used for constantly silencing of MEIS1 mRNA in ESCC line (KYSE-30). Knockdown of MEIS1 gene and the expression pattern of selected stemness markers including SALL4, OCT4, BMI-1, HIWI, NANOG, PLK1, and KLF4 were evaluated using real-time PCR. RESULTS Significant correlations were observed between MEIS1 and stemness marker SALL4 in different early pathological features of ESCC including non-invaded tumors, and the tumors with primary stages of progression. Retroviral knockdown of MEIS1 in KYSE-30 cells caused a noteworthy underexpression of both MEIS1 and major involved markers in stemness state of the cells including SALL4, OCT4, BMI-1, HIWI and KLF4. CONCLUSIONS The results highlight the important potential role of MEIS1 in modulating stemness properties of ESCCs and cells KYSE-30. These findings may confirm the linkage between MEIS1 and self-renewal capacity in ESCC and support probable oncogenic role for MEIS1 in the disease.
Collapse
Affiliation(s)
- Selma Zargari
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shabnam Negahban Khameneh
- Department of Biology, Damghan branch, Islamic Azad University, P.O.Box: 3671639998, Cheshmeh-Ali Boulevard, Sa'dei Square, Damghan, Islamic Republic of Iran
| | - Abolfazl Rad
- Cellular and Molecular Research center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Mahdi Forghanifard
- Department of Biology, Damghan branch, Islamic Azad University, P.O.Box: 3671639998, Cheshmeh-Ali Boulevard, Sa'dei Square, Damghan, Islamic Republic of Iran.
| |
Collapse
|
8
|
Li W, Martinez-Useros J, Garcia-Carbonero N, Fernandez-Aceñero MJ, Ortega-Medina L, Garcia-Botella S, Perez-Aguirre E, Diez-Valladares L, Garcia-Foncillas J. The Prognosis Value of PIWIL1 and PIWIL2 Expression in Pancreatic Cancer. J Clin Med 2019; 8:E1275. [PMID: 31443431 PMCID: PMC6780139 DOI: 10.3390/jcm8091275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/12/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is a highly aggressive manifestation of cancer, and currently presents poor clinical outcome due to its late diagnosis with metastasic disease. Surgery is the only approach with a curative intend; however, the survival rates seen in this type of patient are still low. After surgery, there is a lack of predictive prognosis biomarkers to predict treatment response and survival to establish a personalized medicine. Human P-element-induced wimpy testis 1 (PIWIL1) and P-element-induced wimpy testis 2 (PIWIL2) proteins act as protectors of germline, and their aberrant expression has been described in several types of tumors. In this study, we aimed to assess an association between PIWIL1 and PIWIL2 expression and the prognosis of biliopancreatic cancer patients. For this, we analyzed protein expression in complete resected tumor samples, and found a significant association between PIWIL2 expression and both progression-free and overall survival (p = 0.036 and p = 0.012, respectively). However, PIWIL2 expression was significantly associated with progression-free survival (p = 0.029), and overall survival (p = 0.025) of such tumors originated in the pancreas, but not in the bile duct or ampulla of Vater. Further analysis revealed that PIWIL1 and PIWIL2, at both mRNA and protein expression levels, correlated positively with factors associated to the progenitor molecular subtype of pancreatic cancer. Based on these findings, PIWIL1 and PIWIL2 expression may be considered a potential prognostic biomarker for resectable pancreatic cancer and may serve to guide subsequent adjuvant treatment decisions.
Collapse
Affiliation(s)
- Weiyao Li
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain.
| | - Nuria Garcia-Carbonero
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Maria J Fernandez-Aceñero
- Pathology Department, University Hospital Gregorio Marañon, C/del Dr. Esquerdo 46, 28007 Madrid, Spain
| | - Luis Ortega-Medina
- Pathology Department, Clinico San Carlos University Hospital, C/Profesor Martin Lagos, 28040 Madrid, Spain
| | - Sandra Garcia-Botella
- Surgery Department (Pancreatobiliary Unit), Hospital Clínico San Carlos, C/Profesor Martin Lagos, 28040 Madrid, Spain
| | - Elia Perez-Aguirre
- Surgery Department (Pancreatobiliary Unit), Hospital Clínico San Carlos, C/Profesor Martin Lagos, 28040 Madrid, Spain
| | - Luis Diez-Valladares
- Surgery Department (Pancreatobiliary Unit), Hospital Clínico San Carlos, C/Profesor Martin Lagos, 28040 Madrid, Spain
| | - Jesus Garcia-Foncillas
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain.
| |
Collapse
|
9
|
Chen YW, Ramsook AH, Coxson HO, Bon J, Reid WD. Prevalence and Risk Factors for Osteoporosis in Individuals With COPD: A Systematic Review and Meta-analysis. Chest 2019; 156:1092-1110. [PMID: 31352034 DOI: 10.1016/j.chest.2019.06.036] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/10/2019] [Accepted: 06/21/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Osteoporosis is prevalent in individuals with COPD. Updated evidence is required to complement the previous systematic review on this topic to provide best practice. The aim of this systematic review and meta-analysis was to quantitatively synthesize data from studies with respect to the prevalence and risk factors for osteoporosis among individuals with COPD. METHODS EMBASE, CINAHL, MEDLINE, and PubMed databases were searched for articles containing the key words "COPD," "osteoporosis," "prevalence," and "risk factor." Eligibility screening, data extraction, and quality assessment of the retrieved articles were conducted independently by two reviewers. Meta-analyses were performed to determine osteoporosis prevalence and risk factors in individuals with COPD. Meta-regression analyses were conducted to explore the sources of heterogeneity. RESULTS The pooled global prevalence from 58 studies was 38% (95% CI, 34-43). The presence of COPD increased the likelihood of having osteoporosis (OR, 2.83). Other significant risk factors for osteoporosis in COPD patients were BMI < 18.5 kg/m2 (OR, 4.26) and the presence of sarcopenia (OR, 3.65). CONCLUSIONS Osteoporosis is prevalent in individuals with COPD, and the prevalence seems to be high and similar in many countries. Patients with COPD should be screened for osteoporosis and contributing risk factors.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Department of Sports Medicine, China Medical University, Taichung, Taiwan.
| | - Andrew H Ramsook
- Department of Physical Therapy, Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Harvey O Coxson
- Department of Radiology, Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Jessica Bon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; VA Pittsburgh Healthcare System, Pittsburgh, PA
| | - W Darlene Reid
- Department of Physical Therapy, Faculty of Medicine, Interdepartment Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; KITE - Toronto Rehab-University Health Network, Toronto, ON, Canada
| |
Collapse
|
10
|
Karami Madani G, Rad A, Molavi M, Ardalan Khales S, Abbaszadegan MR, Forghanifard MM. Predicting the Correlation of EZH2 and Cancer Stem Cell Markers in Esophageal Squamous Cell Carcinoma. J Gastrointest Cancer 2017; 49:437-441. [DOI: 10.1007/s12029-017-9985-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
ZFX Facilitates Cell Proliferation and Imatinib Resistance in Chronic Myeloid Leukemia Cells. Cell Biochem Biophys 2016; 74:277-83. [DOI: 10.1007/s12013-016-0725-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 02/18/2016] [Indexed: 01/07/2023]
|
12
|
Liu A, Liu S. Noncoding RNAs in Growth and Death of Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:137-72. [DOI: 10.1007/978-981-10-1498-7_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|