1
|
Mamur S, Gündüzer E, Yaman M. Toxicological aspect of bioinsecticide pyrethrum extract and expressions of apoptotic gene levels in human hepotacellular carcinoma HepG2 cells. Toxicol Mech Methods 2022; 32:373-384. [PMID: 35321623 DOI: 10.1080/15376516.2022.2057266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pyrethrum extract (PE), an important natural bioinsecticide, is extensively used across the world to control pest insects in homes and farms. The aim of this study was to evaluate the potential cytotoxic effect of PE using MTT assay and genotoxic effect using micronucleus (MN) assay. The changes in the expressions of the apoptosis genes in mRNA levels were also investigated using Real Time qPCR analysis as well as the ratio of apoptotic/necrotic cells with AnnexinV-FITC/Propidium iodide (PI) assay in HepG2 cells. PE markedly suppressed the cell proliferation on HepG2 cells. It significantly increased the frequency of micronucleus (MN) at 500 and 1000 µg/mL. PE also induced the percentage of cell population of late apoptotic/necrotic cells (FITC + PI+) and necrotic cells (FITC- PI+) especially at 4000 μg/mL analyzed by flow cytometry. PE caused significant fold changes in the expression of several apoptotic genes including APAF1, BIK, BAX, BAD, BİD, MCL-1, CASP3, CASP1, CASP2, FAS, FADD and TNFRSF1A. In particularly, the pro-apoptotic gene Hrk (Harakiri) remarkably and dose-dependently was overexpressed of the mRNA level. As a result, PE may exhibit cyto-genotoxic effects especially at higher concentrations and lead to significant changes in the expression of mRNA levels in several apoptotic genes.Highlights [Database][Mismatch]Natural bioinsecticide PE exhibited cytotoxic effect in HepG2 cells.PE significantly induced the micronucleus (MN) frequency at 500 and 1000 µg/mL.This bioinsecticide induced cell death and it lead to significant fold changes in the expression of mRNA levels in several apoptotic genes in HepG2 cells.The highest increase of the expression of mRNA levels was determined in Hrk (Harakiri) at 4000 µg/mL.
Collapse
Affiliation(s)
- Sevcan Mamur
- Gazi University, Life Sciences Application and Research Center, 06830, Ankara, Turkey
| | - Esra Gündüzer
- Gazi University, Science Faculty, Deparment of Biology, 06560, Ankara, Turkey
| | - Melek Yaman
- Gazi University, Medicine Faculty, Department of Immunology, 06800, Ankara, Turkey
| |
Collapse
|
2
|
Radiofrequency Electromagnetic Field Exposure and Apoptosis: A Scoping Review of In Vitro Studies on Mammalian Cells. Int J Mol Sci 2022; 23:ijms23042322. [PMID: 35216437 PMCID: PMC8877695 DOI: 10.3390/ijms23042322] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
In the last decades, experimental studies have been carried out to investigate the effects of radiofrequency (RF, 100 kHz–300 GHz) electromagnetic fields (EMF) exposure on the apoptotic process. As evidence-based critical evaluation of RF and apoptosis in vitro is lacking, we performed a scoping literature review with the aim of systematically mapping the research performed in this area and identifying gaps in knowledge. Eligible for inclusion were in vitro studies assessing apoptosis in mammalian cells exposed to RF-EMF, which met basic quality criteria (sham control, at least three independent experiments, appropriate dosimetry analysis and temperature monitoring). We conducted a systematic literature review and charted data in order to overview the main characteristics of included studies. From the 4362 papers retrieved with our search strategy, 121 were pertinent but, among them, only 42 met basic quality criteria. We pooled data with respect to exposure (frequency, exposure level and duration) and biological parameters (cell type, endpoint), and highlighted some qualitative trends with respect to the detection of significant effect of RF-EMF on the apoptotic process. We provided a qualitative picture of the evidence accumulated so far, and highlighted that the quality of experimental methodology still needs to be highly improved.
Collapse
|
3
|
Joushomme A, Garenne A, Dufossée M, Renom R, Ruigrok HJ, Chappe YL, Canovi A, Patrignoni L, Hurtier A, Poulletier de Gannes F, Lagroye I, Lévêque P, Lewis N, Priault M, Arnaud-Cormos D, Percherancier Y. Label-Free Study of the Global Cell Behavior during Exposure to Environmental Radiofrequency Fields in the Presence or Absence of Pro-Apoptotic or Pro-Autophagic Treatments. Int J Mol Sci 2022; 23:ijms23020658. [PMID: 35054844 PMCID: PMC8776001 DOI: 10.3390/ijms23020658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/01/2023] Open
Abstract
It remains controversial whether exposure to environmental radiofrequency signals (RF) impacts cell status or response to cellular stress such as apoptosis or autophagy. We used two label-free techniques, cellular impedancemetry and Digital Holographic Microscopy (DHM), to assess the overall cellular response during RF exposure alone, or during co-exposure to RF and chemical treatments known to induce either apoptosis or autophagy. Two human cell lines (SH-SY5Y and HCT116) and two cultures of primary rat cortex cells (astrocytes and co-culture of neurons and glial cells) were exposed to RF using an 1800 MHz carrier wave modulated with various environmental signals (GSM: Global System for Mobile Communications, 2G signal), UMTS (Universal Mobile Telecommunications System, 3G signal), LTE (Long-Term Evolution, 4G signal, and Wi-Fi) or unmodulated RF (continuous wave, CW). The specific absorption rates (S.A.R.) used were 1.5 and 6 W/kg during DHM experiments and ranged from 5 to 24 W/kg during the recording of cellular impedance. Cells were continuously exposed for three to five consecutive days while the temporal phenotypic signature of cells behavior was recorded at constant temperature. Statistical analysis of the results does not indicate that RF-EMF exposure impacted the global behavior of healthy, apoptotic, or autophagic cells, even at S.A.R. levels higher than the guidelines, provided that the temperature was kept constant.
Collapse
Affiliation(s)
- Alexandre Joushomme
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - André Garenne
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Mélody Dufossée
- Univ. Bordeaux, CNRS, IBGC/UMR 5095, F-33000 Bordeaux, France; (M.D.); (M.P.)
| | - Rémy Renom
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Hermanus Johannes Ruigrok
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Yann Loick Chappe
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Anne Canovi
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Lorenza Patrignoni
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Annabelle Hurtier
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Florence Poulletier de Gannes
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Isabelle Lagroye
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
- Paris Sciences et Lettres Research University, F-75006 Paris, France
| | - Philippe Lévêque
- Univ. Limoges, CNRS, XLIM/UMR 7252, F-87000 Limoges, France; (P.L.); (D.A.-C.)
| | - Noëlle Lewis
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Muriel Priault
- Univ. Bordeaux, CNRS, IBGC/UMR 5095, F-33000 Bordeaux, France; (M.D.); (M.P.)
| | - Delia Arnaud-Cormos
- Univ. Limoges, CNRS, XLIM/UMR 7252, F-87000 Limoges, France; (P.L.); (D.A.-C.)
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Yann Percherancier
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
- Correspondence: ; Tel.: +33-5-40-00-27-24
| |
Collapse
|
4
|
Designing of various biosensor devices for determination of apoptosis: A comprehensive review. Biochem Biophys Res Commun 2021; 578:42-62. [PMID: 34536828 DOI: 10.1016/j.bbrc.2021.08.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 12/30/2022]
Abstract
Apoptosis is a type of cell death caused by the occurrence of both pathological and physiological conditions triggered by ligation of death receptors outside the cell or triggered by DNA damage and/or cytoskeleton disruption. Timely monitoring of apoptosis can effectively help early diagnosis of related diseases and continuous assessment of the effectiveness of drugs. Detecting caspases, a protease family closely related to cellular apoptosis, and its identification as markers of apoptosis is a popular procedure. Biosensors are used for early diagnosis and play a very important role in preventing disease progression in various body sections. Recently, there has been a widespread increase in the desire to use materials made of paper (e.g. nitrocellulose membrane) for Point-of-Care (POC) testing systems since paper and paper-like materials are cheap, abundant and degradable. Microfluidic paper-based analytical devices (μPADs) are highly promising as they are cost-effective, easy to use, fast, precise and sustainable over time and under different environmental conditions. In this review, we focused our efforts on compiling the different approaches on identifying apoptosis pathway while giving brief information about apoptosis and biosensors. This review includes recent advantages in biosensing techniques to simply determine what happened in the cell life and which direction it would continue. As a conclusion, we believed that the review may help to researchers to compare/update the knowledge about diagnosis of the apoptosis pathway while reminding the basic definitions about the apoptosis and biosensor technologies.
Collapse
|
5
|
Ozgur E, Kayhan H, Kismali G, Senturk F, Sensoz M, Ozturk GG, Sel T. Effects of radiofrequency radiation on colorectal cancer cell proliferation and inflammation. TURKISH JOURNAL OF BIOCHEMISTRY 2021. [DOI: 10.1515/tjb-2020-0148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Objectives
The aim of this study is to investigate the effects of radiofrequency radiation (RFR) on apoptosis, proliferation, stress response, and inflammation markers in colorectal cancer cells.
Methods
We tested the effects of intermittent exposure to RFR at different frequencies on two different colorectal cancer cell lines; HCT-116 and DLD-1. Protein levels were subsequently analyzed by ELISA.
Results
RFR led to a decrease in P53, p-P53, p-P38, and p-IkB levels in HCT-116 cells, while leading to an increase in BAD, p-BAD, p-STAT3,NF-κB levels. Two thousand one hundred Megahertz of RFR altered the P53, BAD, and NF-ΚB expression in HCT-116 cells. P53, p-P53, BAD, p-BAD, NF-κB, p-NF-κB, p-P38, p-SAPK/JNK, p-STAT3, and p-IkB levels increased after exposure to RFR at 900 and 2,100 MHz in DLD-1 cells. Unlike HCT-116 cells, 1,800 MHz of RFR was reported to have no effect on DLD1 cells.
Conclusions
RFR increased apoptosis and inflammatory response in HCT116 cells, while lowering the active P38 and active P53 levels, which are indicators of poor prognosis in several cancers. Genetic differences, such as P53 mutation (DLD-1), are critical to the cell response to RFR, which explains the reason why scientific studies on the effects of RFR yield contradictory results.
Collapse
Affiliation(s)
- Elcin Ozgur
- Department of Biophysics , Faculty of Medicine, Gazi University , Ankara , Turkey
| | - Handan Kayhan
- Department of Adult Hematology , Faculty of Medicine, Gazi University , Ankara , Turkey
| | - Gorkem Kismali
- Department of Biochemistry , Faculty of Veterinary Medicine, Ankara University , Ankara , Turkey
| | - Fatih Senturk
- Department of Biophysics , Faculty of Medicine, Gazi University , Ankara , Turkey
| | - Merve Sensoz
- Department of Biochemistry , Faculty of Veterinary Medicine, Ankara University , Ankara , Turkey
| | - Goknur Guler Ozturk
- Department of Biophysics , Faculty of Medicine, Gazi University , Ankara , Turkey
| | - Tevhide Sel
- Department of Biochemistry , Faculty of Veterinary Medicine, Ankara University , Ankara , Turkey
| |
Collapse
|
6
|
Stefi AL, Margaritis LH, Skouroliakou AS, Vassilacopoulou D. Mobile phone electromagnetic radiation affects Amyloid Precursor Protein and α-synuclein metabolism in SH-SY5Y cells. PATHOPHYSIOLOGY 2019; 26:203-212. [DOI: 10.1016/j.pathophys.2019.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/26/2022] Open
|
7
|
Wang HB, Li T, Ma DZ, Zhi H. ERα36 gene silencing promotes tau protein phosphorylation, inhibits cell proliferation, and induces apoptosis in human neuroblastoma SH-SY5Y cells. FASEB J 2018; 32:fj201701386. [PMID: 29932870 DOI: 10.1096/fj.201701386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neuroblastoma is the most common cancer in infants and the third most common cancer in children after leukemia and brain cancer. The purpose of our study was to investigate the effects of estrogen receptor (ER)-α36 gene silencing on tau protein phosphorylation, cell proliferation, and cell apoptosis in human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were treated with estrogen or left untreated, to investigate the effects of estrogen stimulation on ERα36 and the ERK/protein B kinase (AKT) signaling pathway. ERα36 mRNA expressions were detected by quantitative RT-PCR. A phosphatase kit was used to test protein phosphatase (PP)-2A activity before and after treatment. Western blot analysis was conducted to detect protein expression of ERα36; tau protein; phosphorylated- tau (p-tau) at site Thr231 [p-tau (Thr231)]; glycogen synthase kinase (GSK)3β and its specificity sites (Tyr216 and Ser9); Cyclin Dl; proliferating cell nuclear antigen (PCNA); B-cell lymphoma (Bcl)-2; and Bcl-2-associated X protein (Bax). A cell-counting kit (CCK)-8 assay was used to determine cell viability. Cell apoptosis and rate of tumor growth and volume were determined by Annexin V-FITC/PI staining and a xenotransplanted tumor model in nude mice. Results show that without estrogen stimulation, ERα36 was inactivated. When stimulated by estrogen, expression of ERα36, PP2A, p-GSK3β (Ser9)/total protein ( t)-GSK3β, Cyclin Dl, PCNA, and Bcl-2 were up-regulated, and p-GSK3β (Tyr216)/ t-GSK3β expression was down-regulated, as was p-tau (Thr231) and Bax expression. The expression of p-ERK/ERK, p-AKT/AKT, p-methyl ethyl ketone (MEK)/MEK, and p-mammalian target of rapamycin (mTOR)/mTOR expression was up-regulated, suggesting that the ERK/AKT signaling pathway is activated. Cell proliferation was also accelerated, whereas apoptosis was inhibited with stimulation by estrogen. However, we found that the effects of silencing ERα36 on the expression of related intracellular factors had no association with estrogen. Our study demonstrates that ERα36 gene silencing can inhibit the activation of the ERK/AKT signaling pathway, increase tau protein phosphorylation, decrease cell vitality and tumorigenicity, and promote apoptosis of human neuroblastoma SH-SY5Y cells.-Wang, H.-B., Li, T., Ma, D.-Z., Zhi, H. ERα36 gene silencing promotes tau protein phosphorylation, inhibits cell proliferation, and induces apoptosis in human neuroblastoma SH-SY5Y cells.
Collapse
Affiliation(s)
- Hong-Bin Wang
- Department of Neurosurgery, Affiliated Hospital, Hebei University of Engineering, Handan, China
| | - Tao Li
- Department of Neurosurgery, Affiliated Hospital, Hebei University of Engineering, Handan, China
| | - Dong-Zhou Ma
- Department of Neurosurgery, Affiliated Hospital, Hebei University of Engineering, Handan, China
| | - Hua Zhi
- Department of Cardiology, Affiliated Hospital, Hebei University of Engineering, Handan, China
| |
Collapse
|
8
|
Abstract
This study concerns the effects of microwave on health because they pervade diverse fields of our lives. The brain has been recognized as one of the organs that is most vulnerable to microwave radiation. Therefore, in this article, we reviewed recent studies that have explored the effects of microwave radiation on the brain, especially the hippocampus, including analyses of epidemiology, morphology, electroencephalograms, learning and memory abilities and the mechanisms underlying brain dysfunction. However, the problem with these studies is that different parameters, such as the frequency, modulation, and power density of the radiation and the irradiation time, were used to evaluate microwave radiation between studies. As a result, the existing data exhibit poor reproducibility and comparability. To determine the specific dose-effect relationship between microwave radiation and its biological effects, more intensive studies must be performed.
Collapse
Affiliation(s)
- Wei-Jia Zhi
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Li-Feng Wang
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Xiang-Jun Hu
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|