1
|
Gu Y, Piñol R, Moreno-Loshuertos R, Brites CDS, Zeler J, Martínez A, Maurin-Pasturel G, Fernández-Silva P, Marco-Brualla J, Téllez P, Cases R, Belsué RN, Bonvin D, Carlos LD, Millán A. Local Temperature Increments and Induced Cell Death in Intracellular Magnetic Hyperthermia. ACS NANO 2023; 17:6822-6832. [PMID: 36940429 PMCID: PMC10100554 DOI: 10.1021/acsnano.3c00388] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The generation of temperature gradients on nanoparticles heated externally by a magnetic field is crucially important in magnetic hyperthermia therapy. But the intrinsic low heating power of magnetic nanoparticles, at the conditions allowed for human use, is a limitation that restricts the general implementation of the technique. A promising alternative is local intracellular hyperthermia, whereby cell death (by apoptosis, necroptosis, or other mechanisms) is attained by small amounts of heat generated at thermosensitive intracellular sites. However, the few experiments conducted on the temperature determination of magnetic nanoparticles have found temperature increments that are much higher than the theoretical predictions, thus supporting the local hyperthermia hypothesis. Reliable intracellular temperature measurements are needed to get an accurate picture and resolve the discrepancy. In this paper, we report the real-time variation of the local temperature on γ-Fe2O3 magnetic nanoheaters using a Sm3+/Eu3+ ratiometric luminescent thermometer located on its surface during exposure to an external alternating magnetic field. We measure maximum temperature increments of 8 °C on the surface of the nanoheaters without any appreciable temperature increase on the cell membrane. Even with magnetic fields whose frequency and intensity are still well within health safety limits, these local temperature increments are sufficient to produce a small but noticeable cell death, which is enhanced considerably as the magnetic field intensity is increased to the maximum level tolerated for human use, consequently demonstrating the feasibility of local hyperthermia.
Collapse
Affiliation(s)
- Yuanyu Gu
- INMA,
Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- School
of Materials Science and Engineering, Nanjing
Tech University, 210009, Nanjing People’s Republic of China
| | - Rafael Piñol
- INMA,
Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Raquel Moreno-Loshuertos
- Department
of Biochemistry and Molecular and Cellular Biology, and Institute
for Biocomputation and Physics of Complex Systems, University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Carlos D. S. Brites
- Phantom-g,
CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Justyna Zeler
- Phantom-g,
CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
- Faculty
of Chemistry, University of Wroclaw, 14. F. Joliot-Curie Street, 50-383 Wroclaw, Poland
| | - Abelardo Martínez
- Department
of Power Electronics, I3A, University of
Zaragoza, 50018 Zaragoza, Spain
| | - Guillaume Maurin-Pasturel
- INMA,
Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Patricio Fernández-Silva
- Department
of Biochemistry and Molecular and Cellular Biology, and Institute
for Biocomputation and Physics of Complex Systems, University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Joaquín Marco-Brualla
- Department
of Biochemistry and Molecular and Cellular Biology, and Institute
for Biocomputation and Physics of Complex Systems, University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Pedro Téllez
- INMA,
Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Rafael Cases
- INMA,
Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Rafael Navarro Belsué
- INMA,
Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Debora Bonvin
- Powder
Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Luís D. Carlos
- Phantom-g,
CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Angel Millán
- INMA,
Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
2
|
Quintanilla M, Henriksen-Lacey M, Renero-Lecuna C, Liz-Marzán LM. Challenges for optical nanothermometry in biological environments. Chem Soc Rev 2022; 51:4223-4242. [PMID: 35587578 DOI: 10.1039/d2cs00069e] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Temperature monitoring is useful in medical diagnosis, and essential during hyperthermia treatments to avoid undesired cytotoxic effects. Aiming to control heating doses, different temperature monitoring strategies have been developed, largely based on luminescent materials, a.k.a. nanothermometers. However, for such nanothermometers to work, both excitation and emission light beams must travel through tissue, making its optical properties a relevant aspect to be considered during the measurements. In complex tissues, heterogeneity, and real-time alterations as a result of therapeutic treatment may have an effect on light-tissue interaction, hindering accuracy in the thermal reading. In this Tutorial Review we discuss various methods in which nanothermometers can be used for temperature sensing within heterogeneous environments. We discuss recent developments in optical (nano)thermometry, focusing on the incorporation of luminescent nanoparticles into complex in vitro and in vivo models. Methods formulated to avoid thermal misreading are also discussed, considering their respective advantages and drawbacks.
Collapse
Affiliation(s)
- Marta Quintanilla
- Materials Physics Department, Universidad Autónoma de Madrid (UAM), Avda. Francisco Tomás y Valiente, 7. 28049, Madrid, Spain.
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain. .,Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
| | - Carlos Renero-Lecuna
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain. .,Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain. .,Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|