1
|
Acuna-Mendoza S, Martin S, Kuchler-Bopp S, Ribes S, Thalgott J, Chaussain C, Creuzet S, Lesot H, Lebrin F, Poliard A. A New Wnt1-CRE TomatoRosa Embryonic Stem Cell Line: A Tool for Studying Neural Crest Cell Integration Capacity. Stem Cells Dev 2017; 26:1682-1694. [DOI: 10.1089/scd.2017.0115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Soledad Acuna-Mendoza
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Sorbonne Paris Cité, University Paris Descartes, Paris, France
- Department of Pathology and Oral Medicine, Dental Faculty, University of Chile, Santiago, Chile
| | - Sabrina Martin
- CNRS UMR 7241/INSERM U1050, CIRB, Collège de France, Paris, France
| | - Sabine Kuchler-Bopp
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Sandy Ribes
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Sorbonne Paris Cité, University Paris Descartes, Paris, France
| | - Jérémy Thalgott
- The Einthoven Laboratory for Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Catherine Chaussain
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Sorbonne Paris Cité, University Paris Descartes, Paris, France
- AP-HP Department of Odontology, Bretonneau Hospital, Paris, France
| | - Sophie Creuzet
- Laboratoire Neurobiologie et Développement, Institut de Neurobiologie, CNRS-UPR3294, Gif-sur-Yvette, France
| | - Hervé Lesot
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Franck Lebrin
- CNRS UMR 7241/INSERM U1050, CIRB, Collège de France, Paris, France
- The Einthoven Laboratory for Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Anne Poliard
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Sorbonne Paris Cité, University Paris Descartes, Paris, France
| |
Collapse
|
2
|
Cordeiro IR, Lopes DV, Abreu JG, Carneiro K, Rossi MID, Brito JM. Chick embryo xenograft model reveals a novel perineural niche for human adipose-derived stromal cells. Biol Open 2015; 4:1180-93. [PMID: 26319582 PMCID: PMC4582113 DOI: 10.1242/bio.010256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human adipose-derived stromal cells (hADSC) are a heterogeneous cell population that contains adult multipotent stem cells. Although it is well established that hADSC have skeletal potential in vivo in adult organisms, in vitro assays suggest further differentiation capacity, such as into glia. Thus, we propose that grafting hADSC into the embryo can provide them with a much more instructive microenvironment, allowing the human cells to adopt diverse fates or niches. Here, hADSC spheroids were grafted into either the presumptive presomitic mesoderm or the first branchial arch (BA1) regions of chick embryos. Cells were identified without previous manipulations via human-specific Alu probes, which allows efficient long-term tracing of heterogeneous primary cultures. When grafted into the trunk, in contrast to previous studies, hADSC were not found in chondrogenic or osteogenic territories up to E8. Surprisingly, 82.5% of the hADSC were associated with HNK1+ tissues, such as peripheral nerves. Human skin fibroblasts showed a smaller tropism for nerves. In line with other studies, hADSC also adopted perivascular locations. When grafted into the presumptive BA1, 74.6% of the cells were in the outflow tract, the final goal of cardiac neural crest cells, and were also associated with peripheral nerves. This is the first study showing that hADSC could adopt a perineural niche in vivo and were able to recognize cues for neural crest cell migration of the host. Therefore, we propose that xenografts of human cells into chick embryos can reveal novel behaviors of heterogeneous cell populations, such as response to migration cues.
Collapse
Affiliation(s)
- Ingrid R Cordeiro
- Morphological Sciences Program, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Daiana V Lopes
- Morphological Sciences Program, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - José G Abreu
- Morphological Sciences Program, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Katia Carneiro
- Morphological Sciences Program, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Maria I D Rossi
- Morphological Sciences Program, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - José M Brito
- Morphological Sciences Program, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
3
|
Ealba EL, Schneider RA. A simple PCR-based strategy for estimating species-specific contributions in chimeras and xenografts. Development 2013; 140:3062-8. [PMID: 23785056 PMCID: PMC3699287 DOI: 10.1242/dev.092676] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2013] [Indexed: 11/20/2022]
Abstract
Many tissue-engineering approaches for repair and regeneration involve transplants between species. Yet a challenge is distinguishing donor versus host effects on gene expression. This study provides a simple molecular strategy to quantify species-specific contributions in chimeras and xenografts. Species-specific primers for reverse transcription quantitative real-time PCR (RT-qPCR) were designed by identifying silent mutations in quail, duck, chicken, mouse and human ribosomal protein L19 (RPL19). cDNA from different pairs of species was mixed in a dilution series and species-specific RPL19 primers were used to generate standard curves. Then quail cells were transplanted into transgenic-GFP chick and resulting chimeras were analyzed with species-specific primers. Fluorescence-activated cell sorting (FACS) confirmed that donor- and host-specific levels of RPL19 expression represent actual proportions of cells. To apply the RPL19 strategy, we measured Runx2 expression in quail-duck chimeras. Elevated Runx2 levels correlated with higher percentages of donor cells. Finally, RPL19 primers also discriminated mouse from human and chick. Thus, this strategy enables chimeras and/or xenografts to be screened rapidly at the molecular level.
Collapse
Affiliation(s)
- Erin L. Ealba
- Department of Orofacial Sciences, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Richard A. Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Zabierowski SE, Baubet V, Himes B, Li L, Fukunaga-Kalabis M, Patel S, McDaid R, Guerra M, Gimotty P, Dahmane N, Dahamne N, Herlyn M. Direct reprogramming of melanocytes to neural crest stem-like cells by one defined factor. Stem Cells 2012; 29:1752-62. [PMID: 21948558 DOI: 10.1002/stem.740] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mouse and human somatic cells can either be reprogrammed to a pluripotent state or converted to another lineage with a combination of transcription factors suggesting that lineage commitment is a reversible process. Here we show that only one factor, the active intracellular form of Notch1, is sufficient to convert mature pigmented epidermal-derived melanocytes into functional multipotent neural crest (NC) stem-like cells. These induced NC stem cells (iNCSCs) proliferate as spheres under stem cell media conditions, re-express NC-related genes, and differentiate into multiple NC-derived mesenchymal and neuronal lineages. Moreover, iNCSCs are highly migratory and functional in vivo. These results demonstrate that mature melanocytes can be reprogrammed toward their primitive NC cell precursors through the activation of a single stem cell-related pathway. Reprogramming of melanocytes to iNCSCs may provide an alternate source of NCSCs for neuroregenerative applications.
Collapse
Affiliation(s)
- Susan E Zabierowski
- Cellular and Molecular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|