1
|
Tufan Y, Öztatlı H, Doganay D, Buyuksungur A, Cicek MO, Döş İT, Berberoğlu Ç, Unalan HE, Garipcan B, Ercan B. Multifunctional Silk Fibroin/Carbon Nanofiber Scaffolds for In Vitro Cardiomyogenic Differentiation of Induced Pluripotent Stem Cells and Energy Harvesting from Simulated Cardiac Motion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42271-42283. [PMID: 37643896 PMCID: PMC10510024 DOI: 10.1021/acsami.3c08601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
In this proof-of-concept study, cardiomyogenic differentiation of induced pluripotent stem cells (iPSCs) is combined with energy harvesting from simulated cardiac motion in vitro. To achieve this, silk fibroin (SF)-based porous scaffolds are designed to mimic the mechanical and physical properties of cardiac tissue and used as triboelectric nanogenerator (TENG) electrodes. The load-carrying mechanism, β-sheet content, degradation characteristics, and iPSC interactions of the scaffolds are observed to be interrelated and regulated by their pore architecture. The SF scaffolds with a pore size of 379 ± 34 μm, a porosity of 79 ± 1%, and a pore interconnectivity of 67 ± 1% upregulated the expression of cardiac-specific gene markers TNNT2 and NKX2.5 from iPSCs. Incorporating carbon nanofibers (CNFs) enhances the elastic modulus of the scaffolds to 45 ± 3 kPa and results in an electrical conductivity of 0.021 ± 0.006 S/cm. The SF and SF/CNF scaffolds are used as conjugate TENG electrodes and generate a maximum power output of 0.37 × 10-3 mW/m2, with an open-circuit voltage and a short circuit current of 0.46 V and 4.5 nA, respectively, under simulated cardiac motion. A novel approach is demonstrated for fabricating scaffold-based cardiac patches that can serve as tissue scaffolds and simultaneously allow energy harvesting.
Collapse
Affiliation(s)
- Yiğithan Tufan
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, Çankaya, 06800 Ankara, Turkey
| | - Hayriye Öztatlı
- Institute
of Biomedical Engineering, Boğaziçi
University, 34684 İstanbul, Turkey
| | - Doga Doganay
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, Çankaya, 06800 Ankara, Turkey
| | - Arda Buyuksungur
- Department
of Basic Medical Sciences, Faculty of Dentistry, Ankara University, 06560 Ankara, Turkey
| | - Melih Ogeday Cicek
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, Çankaya, 06800 Ankara, Turkey
| | - İpek Tuğçe Döş
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, Çankaya, 06800 Ankara, Turkey
| | - Çağla Berberoğlu
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, Çankaya, 06800 Ankara, Turkey
| | - Husnu Emrah Unalan
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, Çankaya, 06800 Ankara, Turkey
| | - Bora Garipcan
- Institute
of Biomedical Engineering, Boğaziçi
University, 34684 İstanbul, Turkey
| | - Batur Ercan
- Department
of Metallurgical and Materials Engineering, Middle East Technical University, Çankaya, 06800 Ankara, Turkey
- Biomedical
Engineering Program, Middle East Technical
University, Çankaya, 06800 Ankara, Turkey
- BIOMATEN,
Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Çankaya, 06800 Ankara, Turkey
| |
Collapse
|
2
|
Aligned nanofiber scaffolds improve functionality of cardiomyocytes differentiated from human induced pluripotent stem cell-derived cardiac progenitor cells. Sci Rep 2020; 10:13575. [PMID: 32782331 PMCID: PMC7419298 DOI: 10.1038/s41598-020-70547-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022] Open
Abstract
Cardiac progenitor cells (CPCs), capable of differentiating into multiple cardiac cell types including cardiomyocytes (CMs), endothelial cells, and smooth muscle cells, are promising candidates for cardiac repair/regeneration. In vitro model systems where cells are grown in a more in vivo-like environment, such as 3D cultures, have been shown to be more predictive than 2D culture for studying cell biology and disease pathophysiology. In this report, we focused on using Wnt inhibitors to study the differentiation of human iPSC-CPCs under 2D or 3D culture conditions by measuring marker protein and gene expression as well as intracellular Ca2+ oscillation. Our results show that the 3D culture with aligned nanofiber scaffolds, mimicing the architecture of the extracellular matrix of the heart, improve the differentiation of iPSC-CPCs to functional cardiomyocytes induced by Wnt inhibition, as shown with increased number of cardiac Troponin T (cTnT)-positive cells and synchronized intracellular Ca2+ oscillation. In addition, we studied if 3D nanofiber culture can be used as an in vitro model for compound screening by testing a number of other differentiation factors including a ALK5 inhibitor and inhibitors of BMP signaling. This work highlights the importance of using a more relevant in vitro model and measuring not only the expression of marker proteins but also the functional readout in a screen in order to identify the best compounds and to investigate the resulting biology.
Collapse
|
3
|
Meganathan K, Sotiriadou I, Natarajan K, Hescheler J, Sachinidis A. Signaling molecules, transcription growth factors and other regulators revealed from in-vivo and in-vitro models for the regulation of cardiac development. Int J Cardiol 2015; 183:117-28. [PMID: 25662074 DOI: 10.1016/j.ijcard.2015.01.049] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/19/2014] [Accepted: 01/25/2015] [Indexed: 02/08/2023]
Abstract
Several in-vivo heart developmental models have been applied to decipher the cardiac developmental patterning encompassing early, dorsal, cardiac and visceral mesoderm as well as various transcription factors such as Gata, Hand, Tin, Dpp, Pnr. The expression of cardiac specific transcription factors, such as Gata4, Tbx5, Tbx20, Tbx2, Tbx3, Mef2c, Hey1 and Hand1 are of fundamental significance for the in-vivo cardiac development. Not only the transcription factors, but also the signaling molecules involved in cardiac development were conserved among various species. Enrichment of the bone morphogenic proteins (BMPs) in the anterior lateral plate mesoderm is essential for the initiation of myocardial differentiation and the cardiac developmental process. Moreover, the expression of a number of cardiac transcription factors and structural genes initiate cardiac differentiation in the medial mesoderm. Other signaling molecules such as TGF-beta, IGF-1/2 and the fibroblast growth factor (FGF) play a significant role in cardiac repair/regeneration, ventricular heart development and specification of early cardiac mesoderm, respectively. The role of the Wnt signaling in cardiac development is still controversial discussed, as in-vitro results differ dramatically in relation to the animal models. Embryonic stem cells (ESC) were utilized as an important in-vitro model for the elucidation of the cardiac developmental processes since they can be easily manipulated by numerous signaling molecules, growth factors, small molecules and genetic manipulation. Finally, in the present review the dynamic role of the long noncoding RNA and miRNAs in the regulation of cardiac development are summarized and discussed.
Collapse
Affiliation(s)
- Kesavan Meganathan
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Isaia Sotiriadou
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Karthick Natarajan
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Jürgen Hescheler
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Agapios Sachinidis
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany.
| |
Collapse
|
4
|
Gaspar JA, Doss MX, Hengstler JG, Cadenas C, Hescheler J, Sachinidis A. Unique metabolic features of stem cells, cardiomyocytes, and their progenitors. Circ Res 2014; 114:1346-60. [PMID: 24723659 DOI: 10.1161/circresaha.113.302021] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, growing attention has been directed toward stem cell metabolism, with the key observation that the plasticity of stem cells also reflects the plasticity of their energy substrate metabolism. There seems to be a clear link between the self-renewal state of stem cells, in which cells proliferate without differentiation, and the activity of specific metabolic pathways. Differentiation is accompanied by a shift from anaerobic glycolysis to mitochondrial respiration. This metabolic switch of differentiating stem cells is required to cover the energy demands of the different organ-specific cell types. Among other metabolic signatures, amino acid and carbohydrate metabolism is most prominent in undifferentiated embryonic stem cells, whereas the fatty acid metabolic signature is unique in cardiomyocytes derived from embryonic stem cells. Identifying the specific metabolic pathways involved in pluripotency and differentiation is critical for further progress in the field of developmental biology and regenerative medicine. The recently generated knowledge on metabolic key processes may help to generate mature stem cell-derived somatic cells for therapeutic applications without the requirement of genetic manipulation. In the present review, the literature about metabolic features of stem cells and their cardiovascular cell derivatives as well as the specific metabolic gene signatures differentiating between stem and differentiated cells are summarized and discussed.
Collapse
Affiliation(s)
- John Antonydas Gaspar
- From the Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne, Cologne, Germany (J.A.G., M.X.D., J.H., A.S.); and Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany (J.G.H., C.C.)
| | | | | | | | | | | |
Collapse
|
5
|
Fam40b is required for lineage commitment of murine embryonic stem cells. Cell Death Dis 2014; 5:e1320. [PMID: 25010986 PMCID: PMC4123067 DOI: 10.1038/cddis.2014.273] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/25/2014] [Accepted: 05/21/2014] [Indexed: 02/06/2023]
Abstract
FAM40B (STRIP2) is a member of the striatin-interacting phosphatase and kinase (STRIPAK) complex that is involved in the regulation of various processes such as cell proliferation and differentiation. Its role for differentiation processes in embryonic stem cells (ESCs) is till now completely unknown. Short hairpin RNA (shRNA)-mediated silencing of Fam40b expression in ESCs and differentiating embryoid bodies (EBs) led to perturbed differentiation to embryonic germ layers and their derivatives including a complete abrogation of cardiomyogenesis. Pluripotency factors such as Nanog, Oct4 and Sox2 as well as epigenetic factors such as histone acetyltransferase type B (HAT1) and DNA (cytosine-5)-methyltransferase 3-β (Dnmt3b) were highly upregulated in Fam40b knockdown EBs as compared with control and scrambled EBs. To examine the relevance of Fam40b for development in vivo, Fam40b was knocked down in developing zebrafish. Morpholino-mediated knockdown of Fam40b led to severe abnormalities of the cardiovascular system, including an impaired expression of ventricular myosin heavy chain (vmhc) and of cardiac myosin light chain 2 (cmlc2) in the heart. We identified the gene product of Fam40b in ESCs as a perinuclear and nucleolar protein with a molecular weight of 96 kDa. We conclude that the expression of Fam40b is essential for the lineage commitment of murine embryonic stem cells (mESCs) into differentiated somatic cells via mechanisms involving pluripotency and epigenetic networks.
Collapse
|
6
|
Petzer A, Pienaar A, Petzer JP. The interactions of caffeine with monoamine oxidase. Life Sci 2013; 93:283-7. [PMID: 23850513 DOI: 10.1016/j.lfs.2013.06.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/19/2013] [Accepted: 06/27/2013] [Indexed: 11/25/2022]
Abstract
AIMS Caffeine has been used as a scaffold for the design of inhibitors of monoamine oxidase (MAO) A and B. Substitution at the C8 position with a variety of moieties yields structures with high MAO inhibition potencies. Although the MAO inhibitory properties of numerous caffeine derivatives have been characterized, the possibility that caffeine inhibits the MAOs has not been investigated in detail. Based on the therapeutic applications and potential adverse effects of MAO inhibition, this study examines the interactions of caffeine with the MAOs. MAIN METHODS Employing the recombinant human enzymes, the potencies by which caffeine inhibits the in vitro catalytic activities of the MAOs were recorded and expressed as the IC₅₀ and Ki values. The reversibility of inhibition was determined by measuring the recovery of enzyme activity after dialysis of enzyme-caffeine mixtures. KEY FINDINGS Caffeine acts as a MAO inhibitor with Ki values of 0.70 mM and 3.83 mM for the inhibition of MAO-A and MAO-B, respectively. The results show that caffeine binds reversibly and competitively to both MAO enzymes. SIGNIFICANCE Although structural modifications of caffeine lead to highly potent MAO inhibitors, caffeine is a weak inhibitor of MAO-A and MAO-B. At plasma concentrations (approximately 1-10 μM) achieved by normal human consumption, the MAO inhibitory potencies of caffeine are unlikely to be of pharmacological relevance in humans. The MAO inhibitory effects of caffeine should however be taken into consideration when using this drug in vitro and in tissue culture experiments where higher doses and concentrations of caffeine are often used.
Collapse
Affiliation(s)
- Anél Petzer
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | | | | |
Collapse
|