1
|
Sulcanese L, Prencipe G, Canciello A, Cerveró-Varona A, Perugini M, Mauro A, Russo V, Barboni B. Stem-Cell-Driven Chondrogenesis: Perspectives on Amnion-Derived Cells. Cells 2024; 13:744. [PMID: 38727280 PMCID: PMC11083072 DOI: 10.3390/cells13090744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Regenerative medicine harnesses stem cells' capacity to restore damaged tissues and organs. In vitro methods employing specific bioactive molecules, such as growth factors, bio-inductive scaffolds, 3D cultures, co-cultures, and mechanical stimuli, steer stem cells toward the desired differentiation pathways, mimicking their natural development. Chondrogenesis presents a challenge for regenerative medicine. This intricate process involves precise modulation of chondro-related transcription factors and pathways, critical for generating cartilage. Cartilage damage disrupts this process, impeding proper tissue healing due to its unique mechanical and anatomical characteristics. Consequently, the resultant tissue often forms fibrocartilage, which lacks adequate mechanical properties, posing a significant hurdle for effective regeneration. This review comprehensively explores studies showcasing the potential of amniotic mesenchymal stem cells (AMSCs) and amniotic epithelial cells (AECs) in chondrogenic differentiation. These cells exhibit innate characteristics that position them as promising candidates for regenerative medicine. Their capacity to differentiate toward chondrocytes offers a pathway for developing effective regenerative protocols. Understanding and leveraging the innate properties of AMSCs and AECs hold promise in addressing the challenges associated with cartilage repair, potentially offering superior outcomes in tissue regeneration.
Collapse
Affiliation(s)
- Ludovica Sulcanese
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Angelo Canciello
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Monia Perugini
- Department of Bioscience and Technology for Food, Agriculture, and Environment, University of Teramo, 64100 Teramo, Italy;
| | - Annunziata Mauro
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Valentina Russo
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| |
Collapse
|
2
|
Zhao S, Liu Y, Wang J, Wen Y, Wu B, Yang D, Wang G, Xiu G, Ling B, Du D, Xu J. ADSCs increase the autophagy of chondrocytes through decreasing miR-7-5p in Osteoarthritis rats by targeting ATG4A. Int Immunopharmacol 2023; 120:110390. [PMID: 37262955 DOI: 10.1016/j.intimp.2023.110390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a highly degenerative joint disease, mainly companying with progressive destruction of articular cartilage. Adipose-derived stromal cells (ADSCs) therapy enhances articular cartilage repair, extracellular matrix (ECM) synthesis and attenuates joints inflammation, but specific mechanisms of therapeutic benefit remain poorly understood. This study aimed to clarify the therapeutic effects and mechanisms of ADSCs on cartilage damage in the keen joint of OA rat model. METHODS Destabilization of the medial meniscus (DMM) and anterior cruciate ligament transection (ACLT) surgery-induced OA rats were treated with allogeneic ADSCs by intra-articular injections for 6 weeks. The protective effect of ADSCs in vivo was measured using Safranin O and fast green staining, immunofluorescence and western blot analysis. Meanwhile, the miRNA-7-5p (miR-7-5p) expression was assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The mechanism of increased autophagy with ADSCs addition through decreasing miR-7-5p was revealed using oligonucleotides, and adenovirus in rat chondrocytes. The luciferase reporter assay revealed the molecular role of miR-7-5p and autophagy related 4A (ATG4A). The substrate of mTORC1 pathway: (p-)p70S6 and (p-)S6 in OA models with ADSCs addition were detected by western blotting. RESULTS The ADSCs treatment repaired the articular cartilage and maintained chondrocytes ECM homeostasis through modulating chondrocytes autophagy in the OA model, indicators of the change of autophagic proteins expression and autophagic flux. Meanwhile, the increased autophagy induced by ADSCs treatment was closely related to the decreased expression of host-derived miR-7-5p, a negative modulator of OA progression. Functional genomics (overexpression of genes) in vitro studies demonstrate the inhibition of host-derived miR-7-5p in mediating the benefit of ADSCs administration in OA model. Then ATG4A was defined as a target gene of miR-7-5p, and the negative relation between miR-7-5p and ATG4A was investigated in the OA model treated with ADSCs. Furthermore, miR-7-5p mediated chondrocyte autophagy by targeting ATG4A in the OA model treated with ADSCs was confirmed with the rescue trial of ATG4A/miR-7-5p overexpression on rat chondrocyte. Finally, the mTORC1 signaling pathways mediated by host-derived miR-7-5p with ADSCs treatment were decreased in OA rats. CONCLUSIONS ADSCs promote the chondrocytes autophagy by decreasing miR-7-5p in articular cartilage by targeting ATG4A and a potential role for ADSCs based therapeutics for preventing of articular cartilage destruction and extracellular matrix (ECM) degradation in OA.
Collapse
Affiliation(s)
- Shu Zhao
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu'e Liu
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Wen
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Baitong Wu
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Danjing Yang
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangming Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guanghui Xiu
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province),Yunnan University, Kunming, China
| | - Bin Ling
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province),Yunnan University, Kunming, China
| | - Dajiang Du
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Jun Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
3
|
Panero AJ, Hirahara AM, Podesta L, Jamali AA, Andersen W, Smith AA. Allograft Tissues. ATLAS OF INTERVENTIONAL ORTHOPEDICS PROCEDURES 2022:89-101. [DOI: 10.1016/b978-0-323-75514-6.00008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Lee DJ, Kwon J, Kim YI, Kwon YH, Min S, Shin HW. Coating Medpor ® Implant with Tissue-Engineered Elastic Cartilage. J Funct Biomater 2020; 11:jfb11020034. [PMID: 32455861 PMCID: PMC7353498 DOI: 10.3390/jfb11020034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/31/2022] Open
Abstract
Inert biomaterials used for auricular reconstruction, which is one of the most challenging and diverse tasks in craniofacial or head and neck surgery, often cause problems such as capsule formation, infection, and skin extrusion. To solve these problems, scaffold consisting of inert biomaterial, high-density polyethylene (Medpor®) encapsulated with neocartilage, biodegradable poly(DL-lactic-co-glycolic acid) (PLGA) was created using a tissue engineering strategy. PLGA scaffold without Medpor® was created to serve as the control. Scaffolds were vacuum-seeded with rabbit chondrocytes, freshly isolated from the ear by enzymatic digestion. Then, cell-seeded scaffolds were implanted subcutaneously in the dorsal pockets of nude mice. After 12 weeks, explants were analyzed by histological, biochemical, and mechanical evaluations. Although the PLGA group resulted in neocartilage formation, the PLGA-Medpor® group demonstrated improved outcome with the formation of well-surrounded cartilage around the implants with higher mechanical strength than the PLGA group, indicating that Medpor® has an influence on the structural strength of engineered cartilage. The presence of collagen and elastin fibers was evident in the histological section in both groups. These results demonstrated a novel method of coating implant material with engineered cartilage to overcome the limitations of using biodegradable scaffold in cartilage tissue regeneration. By utilizing the patient's own chondrocytes, our proposed method may broaden the choice of implant materials while minimizing side effects and immune reaction for the future medical application.
Collapse
Affiliation(s)
- Dong Joon Lee
- Oral and Craniofacial Health Science Institute, School of Dentistry, University of North Carolina, CB #7454, Chapel Hill, NC 27599, USA; (J.K.); (Y.-I.K.); (Y.H.K.); (S.M.)
- Correspondence: (D.J.L.); (H.W.S.); Tel.: +1-(919)-214-1508 (D.J.L.); +1-(919)-966-8175 (H.W.S.)
| | - Jane Kwon
- Oral and Craniofacial Health Science Institute, School of Dentistry, University of North Carolina, CB #7454, Chapel Hill, NC 27599, USA; (J.K.); (Y.-I.K.); (Y.H.K.); (S.M.)
| | - Yong-Il Kim
- Oral and Craniofacial Health Science Institute, School of Dentistry, University of North Carolina, CB #7454, Chapel Hill, NC 27599, USA; (J.K.); (Y.-I.K.); (Y.H.K.); (S.M.)
- Department of Orthodontics, Dental Research Institute, Pusan National University Dental Hospital, Geumoro 20, Mulgeum, Yangsan 50612, Korea
| | - Yong Hoon Kwon
- Oral and Craniofacial Health Science Institute, School of Dentistry, University of North Carolina, CB #7454, Chapel Hill, NC 27599, USA; (J.K.); (Y.-I.K.); (Y.H.K.); (S.M.)
- Department of Dental Materials, Pusan National University, Busandaehak-ro 49, Mulgeum, Yangsan 50612, Korea
| | - Samuel Min
- Oral and Craniofacial Health Science Institute, School of Dentistry, University of North Carolina, CB #7454, Chapel Hill, NC 27599, USA; (J.K.); (Y.-I.K.); (Y.H.K.); (S.M.)
| | - Hae Won Shin
- Department of Neurology, School of Medicine, University of North Carolina, CB #7025, Chapel Hill, NC 27599, USA
- Correspondence: (D.J.L.); (H.W.S.); Tel.: +1-(919)-214-1508 (D.J.L.); +1-(919)-966-8175 (H.W.S.)
| |
Collapse
|
5
|
O'Brien D, Kia C, Beebe R, Macken C, Bell R, Cote M, McCarthy M, Williams V, Mazzocca AD. Evaluating the Effects of Platelet-Rich Plasma and Amniotic Viscous Fluid on Inflammatory Markers in a Human Coculture Model for Osteoarthritis. Arthroscopy 2019; 35:2421-2433. [PMID: 31395181 DOI: 10.1016/j.arthro.2019.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE To assess the anti-inflammatory effects of platelet-rich plasma (PRP) and amniotic viscous fluid using a human coculture system of cartilage and synovial tissue from osteoarthritic patients. METHODS A coculture system was created using cartilage and synovium from 3 patients undergoing total knee arthroplasty. To induce inflammation, interleukin-1β was added to each coculture. Biologic agents tested included 2 PRP concentrations (PRPL and PRPH) and 2 different samples of amniotic viscous fluid (Amnion and Flograft). Amnion was also tested with PRP to check for any additive effects. Quantitative polymerase chain reaction was used to measure gene expression of factors involved in osteoarthritis, including disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), tissue inhibitor of metalloproteinases 1 (TIMP-1), vascular endothelial growth factor (VEGF), aggrecan, type 1 collagen, and nitric oxide, at 0, 24, 48, and 72 hours. A synthetic nonsteroidal medication, Ketorolac, was used for baseline comparison to the biologic agents. RESULTS When comparing from time 0, both Amnion and Flograft resulted in significant decreases of ADAMTS-5 and TIMP-1 gene expression in cartilage and synovium for up to 72 hours. Both amniotic preparations increased collagen-1 gene expression in cartilage and decreased VEGF expression in synovium. Amnion was not found to have any effect on nitric oxide concentration at any time point (P > .05), as opposed to both PRP concentrations (P < .05). All biologic agents showed differences in gene expression similar to Ketorolac in ADAMTS-5, TIMP-1, and VEGF expression. CONCLUSION This study found that amniotic fluid had anti-inflammatory effects mostly similar to those of both PRPH and PRPL; however, no significant additive effects in reducing inflammatory gene expression were found when combining biologic agents. CLINICAL RELEVANCE PRP and amniotic fluid may provide alternative treatment options to delay the progression of the disease without the systemic and intra-articular side effects of corticosteroids.
Collapse
Affiliation(s)
- Daniel O'Brien
- University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | - Cameron Kia
- University of Connecticut Health Center, Farmington, Connecticut, U.S.A..
| | - Roy Beebe
- University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | - Craig Macken
- University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | - Ryan Bell
- University of Rochester, Rochester, New York, U.S.A
| | - Mark Cote
- University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | - MaryBeth McCarthy
- University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | - Vincent Williams
- University of Connecticut Health Center, Farmington, Connecticut, U.S.A
| | | |
Collapse
|
6
|
Wu Z, Lu H, Yao J, Zhang X, Huang Y, Ma S, Zou K, Wei Y, Yang Z, Li J, Zhao J. GABARAP promotes bone marrow mesenchymal stem cells-based the osteoarthritis cartilage regeneration through the inhibition of PI3K/AKT/mTOR signaling pathway. J Cell Physiol 2019; 234:21014-21026. [PMID: 31020644 DOI: 10.1002/jcp.28705] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 12/16/2022]
Abstract
Osteoarthritis (OA) is a degenerative disease of the cartilage prevalent in the middle-aged and elderly demographic. Direct transplantation of bone marrow mesenchymal stem cells (BMSCs) or stem cell-derived chondrocytes into the damaged cartilage is a promising therapeutic strategy for OA, but is limited by the poor survival and in situ stability of the chondrocytes. Autophagy is a unique catabolic pathway conserved across eukaryotes that maintains cellular homeostasis, recycles damaged proteins and organelles, and promotes survival. The aim of this study was to determine the role of the proautophagic γ-aminobutyric acid receptor-associated protein (GABARAP) on the therapeutic effects of BMSCs-derived chondrocytes in a rat model of OA, and elucidate the underlying mechanisms. Anterior cruciate ligament transection (ACLT) was performed in Sprague-Dawley rats to simulate OA, and the animals were injected weekly with recombinant human His6-GABARAP protein, BMSCs-derived differentiated chondrocytes (DCs) or their combination directly into the knee cartilage. The regenerative effects of GABARAP and/or DCs were determined in term of International Cartilage Repair Society scores and cartilage thickness. The combination treatment of DCs and GABARAP significantly increased the levels of the ECM proteins Col II and SOX9, indicating formation of hyaline-like cartilage, and decreased chondrocyte apoptosis and inflammation. DCs + GABARAP treatment also upregulated the mediators of the autophagy pathway and suppressed the PI3K/AKT/mTOR pathway, indicating a mechanistic basis of its therapeutic action.
Collapse
Affiliation(s)
- Zhengyuan Wu
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huiping Lu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun Yao
- Department of Bone and Joint Surgery, The First Affliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaohan Zhang
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yimei Huang
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shiting Ma
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kai Zou
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhengyi Yang
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jia Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Mesenchymal stem cell-based therapy of osteoarthritis: Current knowledge and future perspectives. Biomed Pharmacother 2018; 109:2318-2326. [PMID: 30551490 DOI: 10.1016/j.biopha.2018.11.099] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/30/2018] [Accepted: 11/25/2018] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is a chronic, prevalent, debilitating joint disease characterized by progressive cartilage degradation, subchondral bone remodeling, bone marrow lesions, meniscal damage, and synovitis. Innate immune cells (natural killer cells, macrophages, and mast cells) play the most important pathogenic role in the early inflammatory response, while cells of adaptive immunity (CD4 + Th1 lymphocytes and antibody producing B cells) significantly contribute to the development of chronic, relapsing course of inflammation in OA patients. Conventional therapy for OA is directed toward symptomatic treatment, mainly pain management, and is not able to promote regeneration of degenerated cartilage or to attenuate joint inflammation. Since articular cartilage, intra-articular ligaments, and menisci have no ability to heal, regeneration of these tissues remains one of the most important goals of new therapeutic approaches used for OA treatment. Due to their capacity for differentiation into chondrocytes and due to their immunomodulatory properties, mesenchymal stem cells (MSCs) have been the most extensively explored as new therapeutic agents in the cell-based therapy of OA. Simple acquisition, rapid proliferation, maintenance of differentiation potential after repeated passages in vitro, minor immunological rejection due to the low surface expression of major histocompatibility complex antigens, efficient engraftment and long-term coexistence in the host are the main characteristics of MSCs that enable their therapeutic use in OA. In this review article, we emphasized current knowledge and future perspectives regarding molecular and cellular mechanisms responsible for beneficial effects of autologous and allogeneic MSCs in the treatment of OA.
Collapse
|
8
|
Suchorska WM, Augustyniak E, Richter M, Trzeciak T. Comparison of Four Protocols to Generate Chondrocyte-Like Cells from Human Induced Pluripotent Stem Cells (hiPSCs). Stem Cell Rev Rep 2017; 13:299-308. [PMID: 27987073 PMCID: PMC5380716 DOI: 10.1007/s12015-016-9708-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stem cells (SCs) are a promising approach to regenerative medicine, with the potential to treat numerous orthopedic disorders, including osteo-degenerative diseases. The development of human-induced pluripotent stem cells (hiPSCs) has increased the potential of SCs for new treatments. However, current methods of differentiating hiPSCs into chondrocyte-like cells are suboptimal and better methods are needed. The aim of the present study was to assess four different chondrogenic differentiation protocols to identify the most efficient method of generating hiPSC-derived chondrocytes. For this study, hiPSCs were obtained from primary human dermal fibroblasts (PHDFs) and differentiated into chondrocyte-like cells using four different protocols: 1) monolayer culture with defined growth factors (GF); 2) embryoid bodies (EBs) in a chondrogenic medium with TGF-β3 cells; 3) EBs in chondrogenic medium conditioned with human chondrocytes (HC-402-05a cell line) and 4) EBs in chondrogenic medium conditioned with human chondrocytes and supplemented with TGF-β3. The cells obtained through these four protocols were evaluated and compared at the mRNA and protein levels. Although chondrogenic differentiation of hiPSCs was successfully achieved with all of these protocols, the two fastest and most cost-effective methods were the monolayer culture with GFs and the medium conditioned with human chondrocytes. Both of these methods are superior to other available techniques. The main advantage of the conditioned medium is that the technique is relatively simple and inexpensive while the directed method (i.e., monolayer culture with GFs) is faster than any protocol described to date because it is does not require additional steps such as EB formation.
Collapse
Affiliation(s)
- Wiktoria Maria Suchorska
- Radiobiology Lab, Greater Poland Cancer Centre, 61- 866, Poznan, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, 61-866, Poznan, Poland
| | - Ewelina Augustyniak
- Radiobiology Lab, Greater Poland Cancer Centre, 61- 866, Poznan, Poland.
- The Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091, Warsaw, Poland.
| | - Magdalena Richter
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 61-545, Poznan, Poland
| | - Tomasz Trzeciak
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 61-545, Poznan, Poland
| |
Collapse
|
9
|
Narakornsak S, Aungsuchawan S, Pothacharoen P, Markmee R, Tancharoen W, Laowanitwattana T, Thaojamnong C, Peerapapong L, Boonma N, Tasuya W, Keawdee J, Poovachiranon N. Sesamin encouraging effects on chondrogenic differentiation of human amniotic fluid-derived mesenchymal stem cells. Acta Histochem 2017; 119:451-461. [PMID: 28499502 DOI: 10.1016/j.acthis.2017.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/04/2017] [Accepted: 04/26/2017] [Indexed: 01/25/2023]
Abstract
Worldwide, the most recognized musculoskeletal degenerative disease is osteoarthritis (OA). Sesamin, a major abundant lignan compound present in Sesamun Indicum Linn, has been described for its various pharmacological effects and health benefits. However, the promoting effects of sesamin on chondrogenic differentiation have not yet been observed. Herein, the aim of this study was to investigate the effects of sesamin on cell cytotoxicity and the potent supporting effects on chondrogenic differentiation of human amniotic fluid-derived mesenchymal stem cells (hAF-MSCs). The results indicated that sesamin was not toxic to hAF-MSCs after sesamin treatment. When treating the cells with a combination of sesamin and inducing factors, sesamin was able to up-regulate the expression level of specific genes which play an essential role during the cartilage development process, including SOX9, AGC, COL2A1, COL11A1, and COMP and also simultaneously promote the cartilage extracellular protein synthesis, aggrecan and type II collagen. Additionally, histological analysis revealed a high amount of accumulated sGAG staining inside the porous scaffold in the sesamin co-treating group. In conclusion, the results of this study have indicated that sesamin can be considered a chondrogenic inducing factor and a beneficial dietary supplement for cartilage repair.
Collapse
Affiliation(s)
- Suteera Narakornsak
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sirinda Aungsuchawan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Peeraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine of Chiang Mai University, Intawarorose Road, Muang Chaing Mai, Thailand
| | - Runchana Markmee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Waleephan Tancharoen
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Chawapon Thaojamnong
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Lamaiporn Peerapapong
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nonglak Boonma
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Witoon Tasuya
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Junjira Keawdee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Naree Poovachiranon
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
10
|
Frisch J, Cucchiarini M. Gene- and Stem Cell-Based Approaches to Regulate Hypertrophic Differentiation in Articular Cartilage Disorders. Stem Cells Dev 2016; 25:1495-1512. [DOI: 10.1089/scd.2016.0106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Janina Frisch
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
11
|
Narakornsak S, Poovachiranon N, Peerapapong L, Pothacharoen P, Aungsuchawan S. Mesenchymal stem cells differentiated into chondrocyte-Like cells. Acta Histochem 2016; 118:418-29. [PMID: 27087049 DOI: 10.1016/j.acthis.2016.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 01/25/2023]
Abstract
Among the stem cells contained in human amniotic fluid (hAF), the human amniotic fluid derived-mesenchymal stem cells (hAF-MSCs) are derived from fetal membranes and tissues that are produced during fetal development. The aim of this study was to characterize the 'stem-ness' properties of hAF-MSCs and their potency with regard to the chondrogenic differentiations using the scaffold cultivation method. This study revealed that the easily accessed and isolated MSCs were highly cell prolific and there were fewer ethical concerns regarding their usage. The MSCs were studied through the use of the alamar blue technique. In addition, after cell isolation, hAF-MSCs displayed typical MSCs morphologies including MSCs biomarker characteristics and immune privilege properties (CD44, CD73, CD90, CD105 and HLA-ABC) through immunofluorescence and flow cytometry. Interestingly, this result indicated a negative expression when using the C-Kit (CD117, tyrosine kinase receptor type III ligand for cytokine stem cell factor). This expression can be found at the cell's surface of the amniotic fluid-derived stem cells (AFSCs). This study found evidence that hAF-MSCs had the ability to differentiate the cells into the chondrogenic lineage by exhibiting chondrogenic related genes and proteins (SOX9, AGC, COL2A1 and COMP) through RT-qPCR, immunoenzymatic assays and immunofluorescence analysis. Furthermore, MSCs presented sGAGs accumulation, which was confirmed by histological analysis and SEM. Therefore, this study showed that the MSCs characteristics are contained in AF and are of significant value for further research. It appears that MSCs possess the potential for use in treatments that would necessitate the use of regenerative cell therapy.
Collapse
|
12
|
Preitschopf A, Schörghofer D, Kinslechner K, Schütz B, Zwickl H, Rosner M, Joó JG, Nehrer S, Hengstschläger M, Mikula M. Rapamycin-Induced Hypoxia Inducible Factor 2A Is Essential for Chondrogenic Differentiation of Amniotic Fluid Stem Cells. Stem Cells Transl Med 2016; 5:580-90. [PMID: 27025692 DOI: 10.5966/sctm.2015-0262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/13/2016] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Amniotic fluid stem (AFS) cells represent a major source of donor cells for cartilage repair. Recently, it became clear that mammalian target of rapamycin (mTOR) inhibition has beneficial effects on cartilage homeostasis, but the effect of mTOR on chondrogenic differentiation is still elusive. Therefore, the objectives of this study were to investigate the effects of mammalian target of rapamycin complex 1 (mTORC1) modulation on the expression of SOX9 and on its downstream targets during chondrogenic differentiation of AFS cells. We performed three-dimensional pellet culturing of AFS cells and of in vitro-expanded, human-derived chondrocytes in the presence of chondrogenic factors. Inhibition of mTORC1 by rapamycin or by small interfering RNA-mediated targeting of raptor (gene name, RPTOR) led to increased AKT activation, upregulation of hypoxia inducible factor (HIF) 2A, and an increase in SOX9, COL2A1, and ACAN abundance. Here we show that HIF2A expression is essential for chondrogenic differentiation and that AKT activity regulates HIF2A amounts. Importantly, engraftment of AFS cells in cell pellets composed of human chondrocytes revealed an advantage of raptor knockdown cells compared with control cells in their ability to express SOX9. Our results demonstrate that mTORC1 inhibition leads to AKT activation and an increase in HIF2A expression. Therefore, we suggest that mTORC1 inhibition is a powerful tool for enhancing chondrogenic differentiation of AFS cells and also of in vitro-expanded adult chondrocytes before transplantation. SIGNIFICANCE Repair of cartilage defects is still an unresolved issue in regenerative medicine. Results of this study showed that inhibition of the mammalian target of rapamycin complex 1 (mTORC1) pathway, by rapamycin or by small interfering RNA-mediated targeting of raptor (gene name, RPTOR), enhanced amniotic fluid stem cell differentiation toward a chondrocytic phenotype and increased their engrafting efficiency into cartilaginous structures. Moreover, freshly isolated and in vitro passaged human chondrocytes also showed redifferentiation upon mTORC1 inhibition during culturing. Therefore, this study revealed that rapamycin could enable a more efficient clinical use of cell-based therapy approaches to treat articular cartilage defects.
Collapse
Affiliation(s)
- Andrea Preitschopf
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria Center for Regenerative Medicine, Danube University Krems, Krems, Austria
| | - David Schörghofer
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | | | - Birgit Schütz
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Hannes Zwickl
- Center for Regenerative Medicine, Danube University Krems, Krems, Austria
| | - Margit Rosner
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - József Gabor Joó
- First Department of Obstetrics and Gynaecology, Medical School, Semmelweis University, Budapest, Hungary
| | - Stefan Nehrer
- Center for Regenerative Medicine, Danube University Krems, Krems, Austria
| | | | - Mario Mikula
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Gadjanski I, Vunjak-Novakovic G. Challenges in engineering osteochondral tissue grafts with hierarchical structures. Expert Opin Biol Ther 2015; 15:1583-99. [PMID: 26195329 PMCID: PMC4628577 DOI: 10.1517/14712598.2015.1070825] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION A major hurdle in treating osteochondral (OC) defects is the different healing abilities of two types of tissues involved - articular cartilage and subchondral bone. Biomimetic approaches to OC-construct engineering, based on recapitulation of biological principles of tissue development and regeneration, have potential for providing new treatments and advancing fundamental studies of OC tissue repair. AREAS COVERED This review on state of the art in hierarchical OC tissue graft engineering is focused on tissue engineering approaches designed to recapitulate the native milieu of cartilage and bone development. These biomimetic systems are discussed with relevance to bioreactor cultivation of clinically sized, anatomically shaped human cartilage/bone constructs with physiologic stratification and mechanical properties. The utility of engineered OC tissue constructs is evaluated for their use as grafts in regenerative medicine, and as high-fidelity models in biological research. EXPERT OPINION A major challenge in engineering OC tissues is to generate a functionally integrated stratified cartilage-bone structure starting from one single population of mesenchymal cells, while incorporating perfusable vasculature into the bone, and in bone-cartilage interface. To this end, new generations of advanced scaffolds and bioreactors, implementation of mechanical loading regimens and harnessing of inflammatory responses of the host will likely drive the further progress.
Collapse
Affiliation(s)
- Ivana Gadjanski
- Belgrade Metropolitan University, Center for Bioengineering – BioIRC, Prvoslava Stojanovica 6, 34000 Kragujevac, Serbia, Tel: +381 64 083 58 62, Fax: +381 11 203 06 28,
| | - Gordana Vunjak-Novakovic
- Laboratory for Stem Cells and Tissue Engineering, Columbia University, 622 west 168th Street, VC12-234, New York NY 10032, USA, tel: +1-212-305-2304, fax: +1-212-305-4692,
| |
Collapse
|
14
|
Pozzobon M, Franzin C, Piccoli M, De Coppi P. Fetal stem cells and skeletal muscle regeneration: a therapeutic approach. Front Aging Neurosci 2014; 6:222. [PMID: 25221507 PMCID: PMC4145352 DOI: 10.3389/fnagi.2014.00222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/05/2014] [Indexed: 12/13/2022] Open
Abstract
More than 40% of the body mass is represented by muscle tissue, which possesses the innate ability to regenerate after damage through the activation of muscle-specific stem cells, namely satellite cells. Muscle diseases, in particular chronic degenerative states of skeletal muscle such as dystrophies, lead to a perturbation of the regenerative process, which causes the premature exhaustion of satellite cell reservoir due to continuous cycles of degeneration/regeneration. Nowadays, the research is focused on different therapeutic approaches, ranging from gene and cell to pharmacological therapy, but still there is no definitive cure in particular for genetic muscle disease. Keeping this in mind, in this article, we will give special consideration to muscle diseases and the use of fetal derived stem cells as a new approach for therapy. Cells of fetal origin, from cord blood to placenta and amniotic fluid, can be easily obtained without ethical concern, expanded and differentiated in culture, and possess immune-modulatory properties. The in vivo approach in animal models can be helpful to study the mechanism underneath the operating principle of the stem cell reservoir, namely the niche, which holds great potential to understand the onset of muscle pathologies.
Collapse
Affiliation(s)
- Michela Pozzobon
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza , Padova , Italy
| | - Chiara Franzin
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza , Padova , Italy
| | - Martina Piccoli
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza , Padova , Italy
| | - Paolo De Coppi
- UCL Institute of Child Health and Great Ormond Street Hospital , London , UK
| |
Collapse
|
15
|
Pievani A, Scagliotti V, Russo FM, Azario I, Rambaldi B, Sacchetti B, Marzorati S, Erba E, Giudici G, Riminucci M, Biondi A, Vergani P, Serafini M. Comparative analysis of multilineage properties of mesenchymal stromal cells derived from fetal sources shows an advantage of mesenchymal stromal cells isolated from cord blood in chondrogenic differentiation potential. Cytotherapy 2014; 16:893-905. [PMID: 24794181 PMCID: PMC4062948 DOI: 10.1016/j.jcyt.2014.02.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 01/29/2014] [Accepted: 02/09/2014] [Indexed: 12/20/2022]
Abstract
Background aims Cord blood (CB) and amniotic fluid (AF) could represent new and attractive mesenchymal stromal cell (MSC) sources, but their potential therapeutic applications are still limited by lack of standardized protocols for isolation and differentiation. In particular, chondrogenic differentiation has never been deeply investigated. Methods MSCs were obtained from CB and AF samples collected during cesarean sections at term and compared for their biological and differentiation properties, with particular interest in cartilage differentiation, in which quantitative real-time polymerase chain reaction and immunohistochemical analyses were performed to evaluate the expression of type 2 collagen, type 10 collagen, SRY-box9 and aggrecan. Results We were able to isolate MSCs from 12 of 30 (40%) and 5 of 20 (25%) CB and AF units, respectively. Fluorescence in situ hybridization analysis indicated the fetal origin of isolated MSC strains. Both populations expressed mesenchymal but not endothelial and hematopoietic markers, even though we observed a lower expression of human leukocyte antigen (HLA) I in CB-MSCs. No differences in proliferation rate and cell cycle analysis could be detected. After osteogenic induction, both populations showed matrix mineralization and typical marker expression. Under chondrogenic conditions, pellets derived from CB-MSCs, in contrast with AF-MSCs pellets, were significantly larger, showed cartilage-like morphology and resulted positive for chondrocyte-associated markers, such as type 2 collagen, type 10 collagen, SRY-box9 and aggrecan. Conclusions Our results show that CB-MSCs and AF-MSCs collected at term differ from each other in their biological and differentiation properties. In particular, only CB-MSCs showed a clear chondrogenic potential and thus could represent an ideal candidate for cartilage-tissue engineering.
Collapse
Affiliation(s)
- Alice Pievani
- Dulbecco Telethon Institute at Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy; Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Valeria Scagliotti
- Dulbecco Telethon Institute at Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy; Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | | | - Isabella Azario
- Dulbecco Telethon Institute at Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy; Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Benedetta Rambaldi
- Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | | | - Simona Marzorati
- Dulbecco Telethon Institute at Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy; Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Eugenio Erba
- Department of Oncology, Flow Cytometry Unit, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Giovanni Giudici
- Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Andrea Biondi
- Pediatric Department, University of Milano-Bicocca, Fondazione MBBM/San Gerardo Hospital, Monza, Italy
| | - Patrizia Vergani
- Department of Obstetrics and Gynecology, University of Milano-Bicocca, Monza, Italy
| | - Marta Serafini
- Dulbecco Telethon Institute at Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy; Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy.
| |
Collapse
|
16
|
Liu S, Shao Y, Lin Q, Liu H, Zhang D. 7,8-Dihydroxy coumarin promotes chondrogenic differentiation of adipose-derived mesenchymal stem cells. J Int Med Res 2013; 41:82-96. [PMID: 23569133 DOI: 10.1177/0300060513476614] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To investigate the effects of 7,8-dihydroxy coumarin on the chondrogenic differentiation of rat adipose-derived mesenchymal stem cells (ADMSCs). METHODS ADMSCs were cultured using a micromass suspension method and incubated with different concentrations of 7,8-dihydroxy coumarin and transforming growth factor (TGF)-β1 for 3 weeks: group A (negative control, no drug treatment); group B (positive control, 10 ng/ml TGF-β1); groups C, D and E (incubated with 25, 50 and 100 µg/ml 7,8-dihydroxy coumarin, respectively); groups F, G and H (incubated with 25, 50 and 100 µg/ml 7,8-dihydroxy coumarin, respectively, plus 10 ng/ml TGF-β1). Markers of chondrogenic differentiation were measured using histology, immunohistochemistry, enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction. RESULTS When used alone, 7,8-dihydroxy coumarin only weakly induced the chondrogenic differentiation of ADMSCs. 7,8-Dihydroxy coumarin used in combination with TGF-β1 strongly induced chondrogenic differentiation of ADMSCs. For some of the markers of chondrogenic differentiation, the extent of the induction was 7,8-dihydroxy coumarin dose-dependent. CONCLUSIONS 7,8-Dihydroxy coumarin appears to work synergistically with TGF-β1 to strongly induce chondrogenic differentiation of rat-derived ADMSCs.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Plastic and Reconstructive Surgery, First Hospital of Jilin University, Changchun, Jilin Province, China
| | | | | | | | | |
Collapse
|