1
|
Sinkler MA, Furdock RJ, McMellen CJ, Calcei JG, Voos JE. Biologics, Stem Cells, Growth Factors, Platelet-Rich Plasma, Hemarthrosis, and Scaffolds May Enhance Anterior Cruciate Ligament Surgical Treatment. Arthroscopy 2023; 39:166-175. [PMID: 36370920 DOI: 10.1016/j.arthro.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Biologics including mesenchymal stem cells (MSCs), growth factors, and platelet-rich plasma may enhance anterior cruciate ligament (ACL) reconstruction and even ACL primary repair. In addition, hemarthrosis after acute ACL injury represents a source of biologic factors. MSCs can differentiate into both fibroblasts and osteoblasts, potentially providing a transition between the ligament or graft and bone. MSCs also produce cytokines and growth factors necessary for cartilage, bone, ligament, and tendon regeneration. MSC sources including bone marrow, synovium, adipose tissue, ACL-remnant, patellar tendon, and umbilical cord. Also, scaffolds may represent a tool for ACL tissue engineering. A scaffold should be porous, which allows cell growth and flow of nutrients and waste, should be biocompatible, and might have mechanical properties that match the native ACL. Scaffolds have the potential to deliver bioactive molecules or stem cells. Synthetic and biologically derived scaffolds are widely available. ACL reconstruction with improved outcome, ACL repair, and ACL tissue engineering are promising goals. LEVEL OF EVIDENCE: Level V, expert opinion.
Collapse
Affiliation(s)
- Margaret A Sinkler
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland Ohio, U.S.A..
| | - Ryan J Furdock
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland Ohio, U.S.A
| | - Christopher J McMellen
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland Ohio, U.S.A
| | - Jacob G Calcei
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland Ohio, U.S.A
| | - James E Voos
- Department of Orthopaedic Surgery, University Hospitals Cleveland Medical Center, Cleveland Ohio, U.S.A
| |
Collapse
|
2
|
Oldershaw RA, Richardson G, Carling P, Owens WA, Lundy DJ, Meeson A. Cardiac Mesenchymal Stem Cell-like Cells Derived from a Young Patient with Bicuspid Aortic Valve Disease Have a Prematurely Aged Phenotype. Biomedicines 2022; 10:3143. [PMID: 36551899 PMCID: PMC9775343 DOI: 10.3390/biomedicines10123143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
There is significant interest in the role of stem cells in cardiac regeneration, and yet little is known about how cardiac disease progression affects native cardiac stem cells in the human heart. In this brief report, cardiac mesenchymal stem cell-like cells (CMSCLC) from the right atria of a 21-year-old female patient with a bicuspid aortic valve and aortic stenosis (referred to as biscuspid aortic valve disease BAVD-CMSCLC), were compared with those of a 78-year-old female patient undergoing coronary artery bypass surgery (referred to as coronary artery disease CAD-CMSCLC). Cells were analyzed for expression of MSC markers, ability to form CFU-Fs, metabolic activity, cell cycle kinetics, expression of NANOG and p16, and telomere length. The cardiac-derived cells expressed MSC markers and were able to form CFU-Fs, with higher rate of formation in CAD-CMSCLCs. BAVD-CMSCLCs did not display normal MSC morphology, had a much lower cell doubling rate, and were less metabolically active than CAD-CMSCLCs. Cell cycle analysis revealed a population of BAVD-CMSCLC in G2/M phase, whereas the bulk of CAD-CMSCLC were in the G0/G1 phase. BAVD-CMSCLC had lower expression of NANOG and shorter telomere lengths, but higher expression of p16 compared with the CAD-CMSCLC. In conclusion, BAVD-CMSCLC have a prematurely aged phenotype compared with CAD-CMSCLC, despite originating from a younger patient.
Collapse
Affiliation(s)
- Rachel A. Oldershaw
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Gavin Richardson
- Newcastle University Bioscience Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Phillippa Carling
- Newcastle University Bioscience Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - W. Andrew Owens
- Newcastle University Bioscience Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
- Department of Cardiothoracic Surgery, South Tees Hospitals NHS Foundation Trust, Middlesbrough TS4 3BW, UK
| | - David J. Lundy
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Annette Meeson
- Newcastle University Bioscience Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
3
|
Coope A, Ghanameh Z, Kingston O, Sheridan CM, Barrett-Jolley R, Phelan MM, Oldershaw RA. 1H NMR Metabolite Monitoring during the Differentiation of Human Induced Pluripotent Stem Cells Provides New Insights into the Molecular Events That Regulate Embryonic Chondrogenesis. Int J Mol Sci 2022; 23:ijms23169266. [PMID: 36012540 PMCID: PMC9409419 DOI: 10.3390/ijms23169266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The integration of cell metabolism with signalling pathways, transcription factor networks and epigenetic mediators is critical in coordinating molecular and cellular events during embryogenesis. Induced pluripotent stem cells (IPSCs) are an established model for embryogenesis, germ layer specification and cell lineage differentiation, advancing the study of human embryonic development and the translation of innovations in drug discovery, disease modelling and cell-based therapies. The metabolic regulation of IPSC pluripotency is mediated by balancing glycolysis and oxidative phosphorylation, but there is a paucity of data regarding the influence of individual metabolite changes during cell lineage differentiation. We used 1H NMR metabolite fingerprinting and footprinting to monitor metabolite levels as IPSCs are directed in a three-stage protocol through primitive streak/mesendoderm, mesoderm and chondrogenic populations. Metabolite changes were associated with central metabolism, with aerobic glycolysis predominant in IPSC, elevated oxidative phosphorylation during differentiation and fatty acid oxidation and ketone body use in chondrogenic cells. Metabolites were also implicated in the epigenetic regulation of pluripotency, cell signalling and biosynthetic pathways. Our results show that 1H NMR metabolomics is an effective tool for monitoring metabolite changes during the differentiation of pluripotent cells with implications on optimising media and environmental parameters for the study of embryogenesis and translational applications.
Collapse
Affiliation(s)
- Ashley Coope
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
- Clinical Directorate Professional Services, Aintree University Hospital, Liverpool University Hospitals NHS Foundation Trust, Lower Lane, Liverpool L9 7AL, UK
| | - Zain Ghanameh
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Olivia Kingston
- Department of Eye and Vision Sciences, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Carl M. Sheridan
- Department of Eye and Vision Sciences, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Richard Barrett-Jolley
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Marie M. Phelan
- Department of Biochemistry, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Biosciences Building, Crown Street, Liverpool L7 7BE, UK
- High Field NMR Facility, Liverpool Shared Research Facilities (LIV-SRF), Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Rachel A. Oldershaw
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
- Correspondence:
| |
Collapse
|
4
|
Oldershaw R, Owens WA, Sutherland R, Linney M, Liddle R, Magana L, Lash GE, Gill JH, Richardson G, Meeson A. Human Cardiac-Mesenchymal Stem Cell-Like Cells, a Novel Cell Population with Therapeutic Potential. Stem Cells Dev 2019; 28:593-607. [PMID: 30803370 PMCID: PMC6486668 DOI: 10.1089/scd.2018.0170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cardiac stem/progenitors are being used in the clinic to treat patients with a range of cardiac pathologies. However, improvements in heart function following treatment have been reported to be variable, with some showing no response. This discrepancy in response remains unresolved. Mesenchymal stem cells (MSCs) have been highlighted as a regenerative tool as these cells display both immunomodulatory and proregenerative activities. The purpose of this study was to derive a cardiac MSC population to provide an alternative/support to current therapies. We derived human cardiac-mesenchymal stem cell-like cells (CMSCLC), so named as they share some MSC characteristics. However, CMSCLC lack the MSC trilineage differentiation capacity, being capable of only rare adipogenic differentiation and demonstrating low/no osteogenic or chondrogenic potential, a phenotype that may have advantages following transplantation. Furthermore, CMSCLC expressed low levels of p16, high levels of MHCI, and low levels of MHCII. A lack of senescent cells would also be advantageous for cells to be used therapeutically, as would the ability to modulate the immune response. Crucially, CMSCLC display a transcriptional profile that includes genes associated with cardioprotective/cardiobeneficial effects. CMSCLC are also secretory and multipotent, giving rise to cardiomyocytes and endothelial cells. Our findings support CMSCLC as a novel cell population suitable for use for transplantation.
Collapse
Affiliation(s)
- Rachel Oldershaw
- 1 Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - W Andrew Owens
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom.,3 Department of Cardiothoracic Surgery, South Tees Hospitals NHS Foundation Trust, Middlesbrough, United Kingdom
| | - Rachel Sutherland
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Martin Linney
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rachel Liddle
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lissette Magana
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gendie E Lash
- 4 Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Jason H Gill
- 5 The Faculty of Medical Sciences, School of Pharmacy, Northern Institute for Cancer Research (NICR), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gavin Richardson
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Annette Meeson
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
5
|
Peffers MJ, Goljanek-Whysall K, Collins J, Fang Y, Rushton M, Loughlin J, Proctor C, Clegg PD. Decoding the Regulatory Landscape of Ageing in Musculoskeletal Engineered Tissues Using Genome-Wide DNA Methylation and RNASeq. PLoS One 2016; 11:e0160517. [PMID: 27533049 PMCID: PMC4988628 DOI: 10.1371/journal.pone.0160517] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/20/2016] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSC) are capable of multipotent differentiation into connective tissues and as such are an attractive source for autologous cell-based regenerative medicine and tissue engineering. Epigenetic mechanisms, like DNA methylation, contribute to the changes in gene expression in ageing. However there was a lack of sufficient knowledge of the role that differential methylation plays during chondrogenic, osteogenic and tenogenic differentiation from ageing MSCs. This study undertook genome level determination of the effects of DNA methylation on expression in engineered tissues from chronologically aged MSCs. We compiled unique DNA methylation signatures from chondrogenic, osteogenic, and tenogenic engineered tissues derived from young; n = 4 (21.8 years ± 2.4 SD) and old; n = 4 (65.5 years±8.3SD) human MSCs donors using the Illumina HumanMethylation 450 Beadchip arrays and compared these to gene expression by RNA sequencing. Unique and common signatures of global DNA methylation were identified. There were 201, 67 and 32 chondrogenic, osteogenic and tenogenic age-related DE protein-coding genes respectively. Findings inferred the nature of the transcript networks was predominantly for 'cell death and survival', 'cell morphology', and 'cell growth and proliferation'. Further studies are required to validate if this gene expression effect translates to cell events. Alternative splicing (AS) was dysregulated in ageing with 119, 21 and 9 differential splicing events identified in chondrogenic, osteogenic and tenogenic respectively, and enrichment in genes associated principally with metabolic processes. Gene ontology analysis of differentially methylated loci indicated age-related enrichment for all engineered tissue types in 'skeletal system morphogenesis', 'regulation of cell proliferation' and 'regulation of transcription' suggesting that dynamic epigenetic modifications may occur in genes associated with shared and distinct pathways dependent upon engineered tissue type. An altered phenotype in engineered tissues was observed with ageing at numerous levels. These changes represent novel insights into the ageing process, with implications for stem cell therapies in older patients. In addition we have identified a number of tissue-dependant pathways, which warrant further studies.
Collapse
Affiliation(s)
- Mandy Jayne Peffers
- Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst, Chester High Road, Neston, Wirral, UK, CH64 7TE
| | - Katarzyna Goljanek-Whysall
- Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst, Chester High Road, Neston, Wirral, UK, CH64 7TE
| | - John Collins
- Thurston Arthritis Research Centre, School Of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA, 27599
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool, UK, L69 7ZB
| | - Michael Rushton
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK, NE2 4HH
| | - John Loughlin
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK, NE2 4HH
| | - Carole Proctor
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK, NE2 4HH
- Newcastle University Institute for Ageing, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK, NE4 5PL
| | - Peter David Clegg
- Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst, Chester High Road, Neston, Wirral, UK, CH64 7TE
| |
Collapse
|
6
|
Liu Y, Ma T. Metabolic regulation of mesenchymal stem cell in expansion and therapeutic application. Biotechnol Prog 2014; 31:468-81. [PMID: 25504836 DOI: 10.1002/btpr.2034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/28/2014] [Indexed: 12/13/2022]
Abstract
Human mesenchymal or stromal cells (hMSCs) isolated from various adult tissues are primary candidates in cell therapy and tissue regeneration. Despite promising results in preclinical studies, robust therapeutic responses to MSC treatment have not been reproducibly demonstrated in clinical trials. In the translation of MSC-based therapy to clinical application, studies of MSC metabolism have significant implication in optimizing bioprocessing conditions to obtain therapeutically competent hMSC population for clinical application. In addition, understanding the contribution of metabolic cues in directing hMSC fate also provides avenues to potentiate their therapeutic effects by modulating their metabolic properties. This review focuses on MSC metabolism and discusses their unique metabolic features in the context of common metabolic properties shared by stem cells. Recent advances in the fundamental understanding of MSC metabolic characteristics in relation to their in vivo origin and metabolic regulation during proliferation, lineage-specific differentiation, and exposure to in vivo ischemic conditions are summarized. Metabolic strategies in directing MSC fate to enhance their therapeutic potential in tissue engineering and regenerative medicine are discussed.
Collapse
Affiliation(s)
- Yijun Liu
- Dept. of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, 32310
| | | |
Collapse
|
7
|
German MJ, Osei-Bempong C, Knuth CA, Deehan DJ, Oldershaw RA. Investigating the biological response of human mesenchymal stem cells to titanium surfaces. J Orthop Surg Res 2014; 9:135. [PMID: 25496535 PMCID: PMC4269958 DOI: 10.1186/s13018-014-0135-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/01/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND We have investigated the behaviour of a newly characterised population of haemarthrosis fluid-derived human mesenchymal stem cells (HF-hMSCs) with titanium (Ti) surfaces. METHODS HF-hMSCs were seeded onto round cannulated interference (RCI; Smith and Nephew) screws or control Ti discs and cultured under pro-osteogenic conditions. RESULTS Electron microscopy showed the attachment and spreading of HF-hMSCs across both Ti surfaces during the early stages of osteogenic culture; however, cells were exclusively localised to the basal regions within the vertex of the Ti screws. In the later stages of culture, an osteoid matrix was deposited on the Ti surfaces with progressive culture expansion and matrix deposition up the sides and the top of the Ti Screws. Quantification of cellular content revealed a significantly higher number of cells within the Ti screw cultures; however, there was no difference in the cellular health. Conversely, alizarin red staining used as both a qualitative and quantitative measure of matrix calcification was significantly increased in Ti disc cultures compared to those of Ti screws. CONCLUSIONS Our results suggest that the gross topography of the metal implant is able to create microenvironment niches that have an influence on cellular behaviour. These results have implications for the design of advanced tissue engineering strategies that seek to use cellular material to enhance biological remodelling and healing following tissue reconstruction.
Collapse
Affiliation(s)
- Matthew J German
- Centre for Oral Health Research, School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4BW, UK.
| | - Charles Osei-Bempong
- Institute of Genetic Medicine, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Times Square, Newcastle upon Tyne, NE1 4EP, UK.
| | - Callie A Knuth
- North East England Stem Cell Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Times Square, Newcastle upon Tyne, NE1 4EP, UK.
| | - David J Deehan
- Department of Orthopaedics, Freeman Hospital, Newcastle upon Tyne NHS Hospitals Foundation Trust, Freeman Road, High Heaton, Newcastle upon Tyne, NE7 7DN, UK.
| | - Rachel A Oldershaw
- North East England Stem Cell Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Times Square, Newcastle upon Tyne, NE1 4EP, UK. .,Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, The University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK.
| |
Collapse
|
8
|
da Silveira Franciozi CE, Ingham SJM, Gracitelli GC, Luzo MVM, Fu FH, Abdalla RJ. Updates in biological therapies for knee injuries: anterior cruciate ligament. Curr Rev Musculoskelet Med 2014; 7:228-38. [PMID: 25070265 DOI: 10.1007/s12178-014-9228-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There have been many advances in anterior cruciate ligament reconstruction (ACLR) techniques incorporating biological treatment. The aim of this review is to discuss the recent contributions that may enlighten our understanding of biological therapies for anterior cruciate ligament (ACL) injuries and improve management decisions involving these enhancement options. Three main biological procedures will be analyzed: bio-enhanced ACL repair, bio-enhanced ACLR scrutinized under the four basic principles of tissue engineering (scaffolds, cell sources, growth factors/cytokines including platelet-rich plasma, and mechanical stimuli), and remnant-preserving ACLR. There is controversial information regarding remnant-preserving ACLR, since different procedures are grouped under the same designation. A new definition for remnant-preserving ACLR surgery is proposed, dividing it into its three major procedures (selective bundle augmentation, augmentation, and nonfunctional remnant preservation); also, an ACL lesion pattern classification and a treatment algorithm, which will hopefully standardize these terms and procedures for future studies, are presented.
Collapse
Affiliation(s)
- Carlos Eduardo da Silveira Franciozi
- Department of Orthopaedic Surgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Borges Lagoa, 783-5°Andar, Vila Clementino, 04038-032, São Paulo, SP, Brazil,
| | | | | | | | | | | |
Collapse
|
9
|
Rogers CM, Deehan DJ, Knuth CA, Rose FRAJ, Shakesheff KM, Oldershaw RA. Biocompatibility and enhanced osteogenic differentiation of human mesenchymal stem cells in response to surface engineered poly(D,L-lactic-co-glycolic acid) microparticles. J Biomed Mater Res A 2013; 102:3872-82. [PMID: 24339408 DOI: 10.1002/jbm.a.35063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/15/2013] [Accepted: 12/09/2013] [Indexed: 01/13/2023]
Abstract
Tissue engineering strategies can be applied to enhancing osseous integration of soft tissue grafts during ligament reconstruction. Ligament rupture results in a hemarthrosis, an acute intra-articular bleed rich in osteogenic human mesenchymal stem cells (hMSCs). With the aim of identifying an appropriate biomaterial with which to combine hemarthrosis fluid-derived hMSCs (HF-hMSCs) for therapeutic application, this work has investigated the biocompatibility of microparticles manufactured from two forms of poly(D,L-lactic-co-glycolic acid) (PLGA), one synthesized with equal monomeric ratios of lactic acid to glycolic acid (PLGA 50:50) and the other with a higher proportion of lactic acid (PLGA 85:15) which confers a longer biodegradation time. The surfaces of both types of microparticles were functionalized by plasma polymerization with allylamine to increase hydrophilicity and promote cell attachment. HF-hMSCs attached to and spread along the surface of both forms of PLGA microparticle. The osteogenic response of HF-hMSCs was enhanced when cultured with PLGA compared with control cultures differentiated on tissue culture plastic and this was independent of the type of polymer used. We have demonstrated that surface engineered PLGA microparticles are an appropriate biomaterial for combining with HF-hMSCs and the selection of PLGA is relevant only when considering the biodegradation time for each biomedical application.
Collapse
Affiliation(s)
- Catherine M Rogers
- School of Pharmacy, Centre for Biomolecular Sciences, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | | | | | | | | | | |
Collapse
|