1
|
Gorji AE, Ahmadian K, Roudbari Z, Sadkowski T. Identification and analysis of differentially expressed lncRNAs and their ceRNA networks in DMD/mdx primary myoblasts. Sci Rep 2024; 14:23691. [PMID: 39390091 PMCID: PMC11467414 DOI: 10.1038/s41598-024-75221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
This study explored the significance of long non-coding RNAs (lncRNAs), particularly their role in maintaining dystrophin protein stability and regulating myocyte proliferation and differentiation. The investigation focused on DMD/mdx mouse skeletal muscle primary myoblasts, aiming to identify lncRNAs potential as biomarkers and therapeutic targets for Duchenne muscular dystrophy (DMD). Utilizing CLC Genomics Workbench software, 554 differentially expressed lncRNAs were identified in DMD/mdx mice compared to wild-type (WT) control. Among them, 373 were upregulated, and 181 were downregulated. The study highlighted specific lncRNAs (e.g., 5930430L01Rik, Gm10143, LncRNA1490, LncRNA580) and their potential regulatory roles in DMD key genes like IGF1, FN1, TNNI1, and MYOD1. By predicting miRNA and their connections with lncRNA and mRNA (ceRNA network) using tools such as miRNet, miRSYSTEM and miRCARTA, the study revealed potential indirect regulation of Dystrophin, IGF1R and UTRN genes by identified lncRNAs (e.g. 2310001H17Rik-203, C130073E24Rik-202, LncRNA2767, 5930430L01Rik and LncRNA580). These findings suggest that the identified lncRNAs may play crucial roles in the development and progression of DMD through their regulatory influence on key gene expression, providing valuable insights for potential therapeutic interventions.
Collapse
Affiliation(s)
- Abdolvahab Ebrahimpour Gorji
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, 02-776, Poland
| | - Kasra Ahmadian
- Department Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zahra Roudbari
- Department of Animal Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, 02-776, Poland.
| |
Collapse
|
2
|
Rodríguez C, Timóteo-Ferreira F, Minchiotti G, Brunelli S, Guardiola O. Cellular interactions and microenvironment dynamics in skeletal muscle regeneration and disease. Front Cell Dev Biol 2024; 12:1385399. [PMID: 38840849 PMCID: PMC11150574 DOI: 10.3389/fcell.2024.1385399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Skeletal muscle regeneration relies on the intricate interplay of various cell populations within the muscle niche-an environment crucial for regulating the behavior of muscle stem cells (MuSCs) and ensuring postnatal tissue maintenance and regeneration. This review delves into the dynamic interactions among key players of this process, including MuSCs, macrophages (MPs), fibro-adipogenic progenitors (FAPs), endothelial cells (ECs), and pericytes (PCs), each assuming pivotal roles in orchestrating homeostasis and regeneration. Dysfunctions in these interactions can lead not only to pathological conditions but also exacerbate muscular dystrophies. The exploration of cellular and molecular crosstalk among these populations in both physiological and dystrophic conditions provides insights into the multifaceted communication networks governing muscle regeneration. Furthermore, this review discusses emerging strategies to modulate the muscle-regenerating niche, presenting a comprehensive overview of current understanding and innovative approaches.
Collapse
Affiliation(s)
- Cristina Rodríguez
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
| | | | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Ombretta Guardiola
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
| |
Collapse
|
3
|
Yedigaryan L, Sampaolesi M. Extracellular vesicles and Duchenne muscular dystrophy pathology: Modulators of disease progression. Front Physiol 2023; 14:1130063. [PMID: 36891137 PMCID: PMC9987248 DOI: 10.3389/fphys.2023.1130063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating disorder and is considered to be one of the worst forms of inherited muscular dystrophies. DMD occurs as a result of mutations in the dystrophin gene, leading to progressive muscle fiber degradation and weakness. Although DMD pathology has been studied for many years, there are aspects of disease pathogenesis and progression that have not been thoroughly explored yet. The underlying issue with this is that the development of further effective therapies becomes stalled. It is becoming more evident that extracellular vesicles (EVs) may contribute to DMD pathology. EVs are vesicles secreted by cells that exert a multitude of effects via their lipid, protein, and RNA cargo. EV cargo (especially microRNAs) is also said to be a good biomarker for identifying the status of specific pathological processes that occur in dystrophic muscle, such as fibrosis, degeneration, inflammation, adipogenic degeneration, and dilated cardiomyopathy. On the other hand, EVs are becoming more prominent vehicles for custom-engineered cargos. In this review, we will discuss the possible contribution of EVs to DMD pathology, their potential use as biomarkers, and the therapeutic efficacy of both, EV secretion inhibition and custom-engineered cargo delivery.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Shen OYJ, Chen YF, Xu HT, Lee CW. The Efficacy of Naïve versus Modified Mesenchymal Stem Cells in Improving Muscle Function in Duchenne Muscular Dystrophy: A Systematic Review. Biomedicines 2021; 9:1097. [PMID: 34572283 PMCID: PMC8467288 DOI: 10.3390/biomedicines9091097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
As one of the most common genetic conditions, Duchenne muscular dystrophy (DMD) is a fatal disease caused by a recessive mutation resulting in muscle weakness in both voluntary and involuntary muscles and, eventually, in death because of cardiovascular failure. Currently, there is no pharmacologically curative treatment of DMD, but there is evidence supporting that mesenchymal stem cells (MSCs) are a novel solution for treating DMD. This systematic review focused on elucidating the therapeutic efficacy of MSCs on the DMD in vivo model. A key issue of previous studies was the material-choice, naïve MSCs or modified MSCs; modified MSCs are activated by culture methods or genetic modification. In summary, MSCs seem to improve pulmonary and cardiac functions and thereby improve survival regardless of them being naïve or modified. The improved function of distal skeletal muscles was observed only with primed MSCs treatment but not naïve MSCs. While MSCs can provide significant benefits to DMD mouse models, there is little to no data on the results in human patients. Due to the limited number of human studies, the differences in study design, and the insufficient understanding of mechanisms of action, more rigorous comparative trials are needed to elucidate which types of MSCs and modifications have optimal therapeutic potential.
Collapse
Affiliation(s)
- Oscar Yuan-Jie Shen
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Yi-Fan Chen
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Hong-Tao Xu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Chien-Wei Lee
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
5
|
Ausems CRM, van Engelen BGM, van Bokhoven H, Wansink DG. Systemic cell therapy for muscular dystrophies : The ultimate transplantable muscle progenitor cell and current challenges for clinical efficacy. Stem Cell Rev Rep 2021; 17:878-899. [PMID: 33349909 PMCID: PMC8166694 DOI: 10.1007/s12015-020-10100-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 01/07/2023]
Abstract
The intrinsic regenerative capacity of skeletal muscle makes it an excellent target for cell therapy. However, the potential of muscle tissue to renew is typically exhausted and insufficient in muscular dystrophies (MDs), a large group of heterogeneous genetic disorders showing progressive loss of skeletal muscle fibers. Cell therapy for MDs has to rely on suppletion with donor cells with high myogenic regenerative capacity. Here, we provide an overview on stem cell lineages employed for strategies in MDs, with a focus on adult stem cells and progenitor cells resident in skeletal muscle. In the early days, the potential of myoblasts and satellite cells was explored, but after disappointing clinical results the field moved to other muscle progenitor cells, each with its own advantages and disadvantages. Most recently, mesoangioblasts and pericytes have been pursued for muscle cell therapy, leading to a handful of preclinical studies and a clinical trial. The current status of (pre)clinical work for the most common forms of MD illustrates the existing challenges and bottlenecks. Besides the intrinsic properties of transplantable cells, we discuss issues relating to cell expansion and cell viability after transplantation, optimal dosage, and route and timing of administration. Since MDs are genetic conditions, autologous cell therapy and gene therapy will need to go hand-in-hand, bringing in additional complications. Finally, we discuss determinants for optimization of future clinical trials for muscle cell therapy. Joined research efforts bring hope that effective therapies for MDs are on the horizon to fulfil the unmet clinical need in patients.
Collapse
Affiliation(s)
- C Rosanne M Ausems
- Donders lnstitute for Brain Cognition and Behavior, Department of Human Genetics, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands
- Donders lnstitute for Brain Cognition and Behavior, Department of Neurology, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands
| | - Baziel G M van Engelen
- Donders lnstitute for Brain Cognition and Behavior, Department of Neurology, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Donders lnstitute for Brain Cognition and Behavior, Department of Human Genetics, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands.
| | - Derick G Wansink
- Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Sandonà M, Di Pietro L, Esposito F, Ventura A, Silini AR, Parolini O, Saccone V. Mesenchymal Stromal Cells and Their Secretome: New Therapeutic Perspectives for Skeletal Muscle Regeneration. Front Bioeng Biotechnol 2021; 9:652970. [PMID: 34095095 PMCID: PMC8172230 DOI: 10.3389/fbioe.2021.652970] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent cells found in different tissues: bone marrow, peripheral blood, adipose tissues, skeletal muscle, perinatal tissues, and dental pulp. MSCs are able to self-renew and to differentiate into multiple lineages, and they have been extensively used for cell therapy mostly owing to their anti-fibrotic and immunoregulatory properties that have been suggested to be at the basis for their regenerative capability. MSCs exert their effects by releasing a variety of biologically active molecules such as growth factors, chemokines, and cytokines, either as soluble proteins or enclosed in extracellular vesicles (EVs). Analyses of MSC-derived secretome and in particular studies on EVs are attracting great attention from a medical point of view due to their ability to mimic all the therapeutic effects produced by the MSCs (i.e., endogenous tissue repair and regulation of the immune system). MSC-EVs could be advantageous compared with the parental cells because of their specific cargo containing mRNAs, miRNAs, and proteins that can be biologically transferred to recipient cells. MSC-EV storage, transfer, and production are easier; and their administration is also safer than MSC therapy. The skeletal muscle is a very adaptive tissue, but its regenerative potential is altered during acute and chronic conditions. Recent works demonstrate that both MSCs and their secretome are able to help myofiber regeneration enhancing myogenesis and, interestingly, can be manipulated as a novel strategy for therapeutic interventions in muscular diseases like muscular dystrophies or atrophy. In particular, MSC-EVs represent promising candidates for cell free-based muscle regeneration. In this review, we aim to give a complete picture of the therapeutic properties and advantages of MSCs and their products (MSC-derived EVs and secreted factors) relevant for skeletal muscle regeneration in main muscular diseases.
Collapse
Affiliation(s)
- Martina Sandonà
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Lorena Di Pietro
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Esposito
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Alessia Ventura
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca "E. Menni", Fondazione Poliambulanza - Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Valentina Saccone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy.,Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
7
|
Cardiac Protection after Systemic Transplant of Dystrophin Expressing Chimeric (DEC) Cells to the mdx Mouse Model of Duchenne Muscular Dystrophy. Stem Cell Rev Rep 2020; 15:827-841. [PMID: 31612351 PMCID: PMC6925071 DOI: 10.1007/s12015-019-09916-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is a progressive lethal disease caused by X-linked mutations of the dystrophin gene. Dystrophin deficiency clinically manifests as skeletal and cardiac muscle weakness, leading to muscle wasting and premature death due to cardiac and respiratory failure. Currently, no cure exists. Since heart disease is becoming a leading cause of death in DMD patients, there is an urgent need to develop new more effective therapeutic strategies for protection and improvement of cardiac function. We previously reported functional improvements correlating with dystrophin restoration following transplantation of Dystrophin Expressing Chimeric Cells (DEC) of myoblast origin in the mdx and mdx/scid mouse models. Here, we confirm positive effect of DEC of myoblast (MBwt/MBmdx) and mesenchymal stem cells (MBwt/MSCmdx) origin on protection of cardiac function after systemic DEC transplant. Therapeutic effect of DEC transplant (0.5 × 106) was assessed by echocardiography at 30 and 90 days after systemic-intraosseous injection to the mdx mice. At 90 days post-transplant, dystrophin expression in cardiac muscles of DEC injected mice significantly increased (15.73% ± 5.70 –MBwt/MBmdx and 5.22% ± 1.10 – MBwt/MSCmdx DEC) when compared to vehicle injected controls (2.01% ± 1.36) and, correlated with improved ejection fraction and fractional shortening on echocardiography. DEC lines of MB and MSC origin introduce a new promising approach based on the combined effects of normal myoblasts with dystrophin delivery capacities and MSC with immunomodulatory properties. Our study confirms feasibility and efficacy of DEC therapy on cardiac function and represents a novel therapeutic strategy for cardiac protection and muscle regeneration in DMD.
Collapse
|
8
|
Ausems CRM, Raaijmakers RHL, van den Broek WJAA, Willemse M, van Engelen BGM, Wansink DG, van Bokhoven H. Intrinsic Myogenic Potential of Skeletal Muscle-Derived Pericytes from Patients with Myotonic Dystrophy Type 1. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:120-132. [PMID: 31649961 PMCID: PMC6804802 DOI: 10.1016/j.omtm.2019.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Abstract
Pericytes are multipotent, vessel-associated progenitors that exhibit high proliferative capacity, can cross the blood-muscle barrier, and have the ability to home to muscle tissue and contribute to myogenesis. Consequently, pericyte-based therapies hold great promise for muscular dystrophies. A complex multi-system disorder exhibiting muscular dystrophy for which pericytes might be a valuable cell source is myotonic dystrophy type 1 (DM1). DM1 is caused by an unstable (CTG)n repeat in the DMPK gene and characterized by skeletal muscle weakness, muscle wasting, and myotonia. We have successfully isolated alkaline phosphatase-positive pericytes from skeletal muscle of DM1 patients and a transgenic mouse model. Intranuclear (CUG)n RNA foci, a pathogenic DM1 hallmark, were identified in human and mouse pericytes. Notably, pericytes from DM1 patients maintained similar growth parameters and innate myogenic characteristics in vitro compared to cells from unaffected controls. Our in vitro results thus demonstrate the potential of pericytes to ameliorate muscle features in DM1 in a therapeutic setting.
Collapse
Affiliation(s)
- Cornelia Rosanne Maria Ausems
- Department of Human Genetics, Radboud University Medical Center, Donders lnstitute for Brain Cognition and Behavior, 6525 GA Nijmegen, the Netherlands.,Department of Neurology, Radboud University Medical Center, Donders lnstitute for Brain Cognition and Behavior, 6500 HB Nijmegen, the Netherlands.,Department of Cell Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, the Netherlands
| | - Renée Henrica Lamberta Raaijmakers
- Department of Human Genetics, Radboud University Medical Center, Donders lnstitute for Brain Cognition and Behavior, 6525 GA Nijmegen, the Netherlands.,Department of Neurology, Radboud University Medical Center, Donders lnstitute for Brain Cognition and Behavior, 6500 HB Nijmegen, the Netherlands.,Department of Cell Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, the Netherlands
| | | | - Marieke Willemse
- Department of Cell Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, the Netherlands
| | - Baziel Gerardus Maria van Engelen
- Department of Neurology, Radboud University Medical Center, Donders lnstitute for Brain Cognition and Behavior, 6500 HB Nijmegen, the Netherlands
| | - Derick Gert Wansink
- Department of Cell Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, the Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud University Medical Center, Donders lnstitute for Brain Cognition and Behavior, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
9
|
Moyle LA, Tedesco FS, Benedetti S. Pericytes in Muscular Dystrophies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:319-344. [PMID: 31147885 DOI: 10.1007/978-3-030-16908-4_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The muscular dystrophies are an heterogeneous group of inherited myopathies characterised by the progressive wasting of skeletal muscle tissue. Pericytes have been shown to make muscle in vitro and to contribute to skeletal muscle regeneration in several animal models, although recent data has shown this to be controversial. In fact, some pericyte subpopulations have been shown to contribute to fibrosis and adipose deposition in muscle. In this chapter, we explore the identity and the multifaceted role of pericytes in dystrophic muscle, potential therapeutic applications and the current need to overcome the hurdles of characterisation (both to identify pericyte subpopulations and track cell fate), to prevent deleterious differentiation towards myogenic-inhibiting subpopulations, and to improve cell proliferation and engraftment efficacy.
Collapse
Affiliation(s)
- Louise Anne Moyle
- Institute of Biomaterials and Biomedical Engineering, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London, UK.
- Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Sara Benedetti
- Great Ormond Street Institute of Child Health, University College London, London, UK.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
10
|
Abstract
Skeletal muscle regeneration is a highly orchestrated process and involves the activation of many cellular and molecular pathways. Although satellite cells (SCs) are the major cell type responsible for muscle regeneration, pericytes show remarkable myogenic potential and various advantages as cell therapy in muscular disorders. This chapter first introduces the structure, marker expression, origin, and category of pericytes. Next, we discuss their functions in muscular dystrophy and/or muscle injuries, focusing on their myogenic, adipogenic, fibrogenic, chondrogenic, and osteogenic activities. Understanding this knowledge will promote the development of innovative cell therapies for muscle disorders, including muscular dystrophy.
Collapse
|
11
|
Siemionow M, Cwykiel J, Heydemann A, Garcia-Martinez J, Siemionow K, Szilagyi E. Creation of Dystrophin Expressing Chimeric Cells of Myoblast Origin as a Novel Stem Cell Based Therapy for Duchenne Muscular Dystrophy. Stem Cell Rev Rep 2018; 14:189-199. [PMID: 29305755 PMCID: PMC5887005 DOI: 10.1007/s12015-017-9792-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past decade different stem cell (SC) based approaches were tested to treat Duchenne Muscular Dystrophy (DMD), a lethal X-linked disorder caused by mutations in dystrophin gene. Despite research efforts, there is no curative therapy for DMD. Allogeneic SC therapies aim to restore dystrophin in the affected muscles; however, they are challenged by rejection and limited engraftment. Thus, there is a need to develop new more efficacious SC therapies. Chimeric Cells (CC), created via ex vivo fusion of donor and recipient cells, represent a promising therapeutic option for tissue regeneration and Vascularized Composite Allotransplantation (VCA) due to tolerogenic properties that eliminate the need for lifelong immunosuppression. This proof of concept study tested feasibility of myoblast fusion for Dystrophin Expressing. Chimeric Cell (DEC) therapy through in vitro characterization and in vivo assessment of engraftment, survival, and efficacy in the mdx mouse model of DMD. Murine DEC were created via ex vivo fusion of normal (snj) and dystrophin–deficient (mdx) myoblasts using polyethylene glycol. Efficacy of myoblast fusion was confirmed by flow cytometry and dystrophin immunostaining, while proliferative and myogenic differentiation capacity of DEC were assessed in vitro. Therapeutic effect after DEC transplant (0.5 × 106) into the gastrocnemius muscle (GM) of mdx mice was assessed by muscle functional tests. At 30 days post-transplant dystrophin expression in GM of injected mdx mice increased to 37.27 ± 12.1% and correlated with improvement of muscle strength and function. Our study confirmed feasibility and efficacy of DEC therapy and represents a novel SC based approach for treatment of muscular dystrophies.
Collapse
Affiliation(s)
- M Siemionow
- Department of Surgery, Poznan University of Medical Sciences, Poznan, Poland.
- Department of Orthopedics, University of Illinois at Chicago, Chicago, IL, USA.
| | - J Cwykiel
- Department of Orthopedics, University of Illinois at Chicago, Chicago, IL, USA
| | - A Heydemann
- Department of Physiology, University of Illinois at Chicago, Chicago, IL, USA
| | - J Garcia-Martinez
- Department of Physiology, University of Illinois at Chicago, Chicago, IL, USA
| | - K Siemionow
- Department of Orthopedics, University of Illinois at Chicago, Chicago, IL, USA
| | - E Szilagyi
- Department of Orthopedics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Gomes JP, Coatti GC, Valadares MC, Assoni AF, Pelatti MV, Secco M, Zatz M. Human Adipose-Derived CD146+ Stem Cells Increase Life Span of a Muscular Dystrophy Mouse Model More Efficiently than Mesenchymal Stromal Cells. DNA Cell Biol 2018; 37:798-804. [DOI: 10.1089/dna.2018.4158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Juliana P. Gomes
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Giuliana C. Coatti
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marcos C. Valadares
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Amanda F. Assoni
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mayra V. Pelatti
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mariane Secco
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mayana Zatz
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
13
|
Lorant J, Larcher T, Jaulin N, Hedan B, Lardenois A, Leroux I, Dubreil L, Ledevin M, Goubin H, Moullec S, Deschamps JY, Thorin C, André C, Adjali O, Rouger K. Vascular Delivery of Allogeneic MuStem Cells in Dystrophic Dogs Requires Only Short-Term Immunosuppression to Avoid Host Immunity and Generate Clinical/Tissue Benefits. Cell Transplant 2018; 27:1096-1110. [PMID: 29871519 PMCID: PMC6158548 DOI: 10.1177/0963689718776306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 01/15/2023] Open
Abstract
Growing demonstrations of regenerative potential for some stem cells led recently to promising therapeutic proposals for neuromuscular diseases. We have shown that allogeneic MuStem cell transplantation into Golden Retriever muscular dystrophy (GRMD) dogs under continuous immunosuppression (IS) leads to persistent clinical stabilization and muscle repair. However, long-term IS in medical practice is associated with adverse effects raising safety concerns. Here, we investigate whether the IS removal or its restriction to the transplantation period could be considered. Dogs aged 4-5 months old received vascular infusions of allogeneic MuStem cells without IS (GRMDMU/no-IS) or under transient IS (GRMDMU/tr-IS). At 5 months post-infusion, persisting clinical status improvement of the GRMDMU/tr-IS dogs was observed while GRMDMU/no-IS dogs exhibited no benefit. Histologically, only 9-month-old GRMDMU/tr-IS dogs showed an increased muscle regenerative activity. A mixed cell reaction with the host peripheral blood mononucleated cells (PBMCs) and corresponding donor cells revealed undetectable to weak lymphocyte proliferation in GRMDMU/tr-IS dogs compared with a significant proliferation in GRMDMU/no-IS dogs. Importantly, any dog group showed neither cellular nor humoral anti-dystrophin responses. Our results show that transient IS is necessary and sufficient to sustain allogeneic MuStem cell transplantation benefits and prevent host immunity. These findings provide useful critical insight to designing therapeutic strategies.
Collapse
Affiliation(s)
- Judith Lorant
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307, France
- Judith Lorant and Thibaut Larcher both contributed equally to this work
| | - Thibaut Larcher
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307, France
- Judith Lorant and Thibaut Larcher both contributed equally to this work
| | - Nicolas Jaulin
- INSERM, UMR1089, Centre Hospitalier Universitaire, Nantes, France
| | - Benoît Hedan
- CNRS, UMR6290, Institut de Génétique et Développement de Rennes, Université Rennes 1, Rennes, France
- Université Rennes 1, UEB, IFR140, Faculté de Médecine, Rennes, France
| | - Aurélie Lardenois
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307, France
| | - Isabelle Leroux
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307, France
| | - Laurence Dubreil
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307, France
| | - Mireille Ledevin
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307, France
| | - Hélicia Goubin
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307, France
| | | | - Jack-Yves Deschamps
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307, France
- Centre de Boisbonne, Oniris, Nantes, France
| | - Chantal Thorin
- Laboratoire de Physiopathologie Animale et Pharmacologie Fonctionnelle, Oniris, Nantes, France
| | - Catherine André
- CNRS, UMR6290, Institut de Génétique et Développement de Rennes, Université Rennes 1, Rennes, France
- Université Rennes 1, UEB, IFR140, Faculté de Médecine, Rennes, France
| | - Oumeya Adjali
- INSERM, UMR1089, Centre Hospitalier Universitaire, Nantes, France
| | - Karl Rouger
- PAnTher, INRA, École Nationale Vétérinaire, Agro-alimentaire et de l’Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), Nantes, F-44307, France
| |
Collapse
|
14
|
Coatti GC, Frangini M, Valadares MC, Gomes JP, Lima NO, Cavaçana N, Assoni AF, Pelatti MV, Birbrair A, de Lima ACP, Singer JM, Rocha FMM, Da Silva GL, Mantovani MS, Macedo-Souza LI, Ferrari MFR, Zatz M. Pericytes Extend Survival of ALS SOD1 Mice and Induce the Expression of Antioxidant Enzymes in the Murine Model and in IPSCs Derived Neuronal Cells from an ALS Patient. Stem Cell Rev Rep 2018; 13:686-698. [PMID: 28710685 DOI: 10.1007/s12015-017-9752-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is one of the most common adult-onset motor neuron disease causing a progressive, rapid and irreversible degeneration of motor neurons in the cortex, brain stem and spinal cord. No effective treatment is available and cell therapy clinical trials are currently being tested in ALS affected patients. It is well known that in ALS patients, approximately 50% of pericytes from the spinal cord barrier are lost. In the central nervous system, pericytes act in the formation and maintenance of the blood-brain barrier, a natural defense that slows the progression of symptoms in neurodegenerative diseases. Here we evaluated, for the first time, the therapeutic effect of human pericytes in vivo in SOD1 mice and in vitro in motor neurons and other neuronal cells derived from one ALS patient. Pericytes and mesenchymal stromal cells (MSCs) were derived from the same adipose tissue sample and were administered to SOD1 mice intraperitoneally. The effect of the two treatments was compared. Treatment with pericytes extended significantly animals survival in SOD1 males, but not in females that usually have a milder phenotype with higher survival rates. No significant differences were observed in the survival of mice treated with MSCs. Gene expression analysis in brain and spinal cord of end-stage animals showed that treatment with pericytes can stimulate the host antioxidant system. Additionally, pericytes induced the expression of SOD1 and CAT in motor neurons and other neuronal cells derived from one ALS patient carrying a mutation in FUS. Overall, treatment with pericytes was more effective than treatment with MSCs. Our results encourage further investigations and suggest that pericytes may be a good option for ALS treatment in the future. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Giuliana Castello Coatti
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Miriam Frangini
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Marcos C Valadares
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Juliana Plat Gomes
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Natalia O Lima
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Natale Cavaçana
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Amanda F Assoni
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Mayra V Pelatti
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Alexander Birbrair
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pathology, University Federal of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Julio M Singer
- Department of Statistics, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | | | | | | | - Lucia Inês Macedo-Souza
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Merari F R Ferrari
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil.
| |
Collapse
|
15
|
Bier A, Berenstein P, Kronfeld N, Morgoulis D, Ziv-Av A, Goldstein H, Kazimirsky G, Cazacu S, Meir R, Popovtzer R, Dori A, Brodie C. Placenta-derived mesenchymal stromal cells and their exosomes exert therapeutic effects in Duchenne muscular dystrophy. Biomaterials 2018; 174:67-78. [PMID: 29783118 DOI: 10.1016/j.biomaterials.2018.04.055] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a degenerative lethal, X-linked disease of skeletal and cardiac muscles caused by mutations in the dystrophin gene. Cell therapy using different cell types, including mesenchymal stromal cells (MSCs), has been considered as a potential approach for the treatment of DMD. MSCs can be obtained from autologous sources such as bone marrow and adipose tissues or from allogeneic placenta and umbilical cord. The safety and therapeutic impact of these cells has been demonstrated in pre-clinical and clinical studies and their functions are attributed to paracrine effects that are mediated by secreted cytokines and extracellular vesicles. Here, we studied the therapeutic effects of placenta-derived MSCs (PL-MSCs) and their secreted exosomes using mouse and human myoblasts from healthy controls, Duchenne patients and mdx mice. Treatment of myoblasts with conditioned medium or exosomes secreted by PL-MSCs increased the differentiation of these cells and decreased the expression of fibrogenic genes in DMD patient myoblasts. In addition, these treatments also increased the expression of utrophin in these cells. Using a quantitative miR-29c reporter, we demonstrated that the PL-MSC effects were partly mediated by the transfer of exosomal miR-29c. Intramuscular transplantation of PL-MSCs in mdx mice resulted in decreased creatine kinase levels. PL-MSCs significantly decreased the expression of TGF-β and the level of fibrosis in the diaphragm and cardiac muscles, inhibited inflammation and increased utrophin expression. In vivo imaging analyses using MSCs labeled with gold nanoparticles or fluorescent dyes demonstrated localization of the cells in the muscle tissues up to 3 weeks post treatment. Altogether, these results demonstrate that PL-MSCs and their secreted exosomes have important clinical applications in cell therapy of DMD partly via the targeted delivery of exosomal miR-29c.
Collapse
Affiliation(s)
- Ariel Bier
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Peter Berenstein
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Noam Kronfeld
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Daria Morgoulis
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Amotz Ziv-Av
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Hodaya Goldstein
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Gila Kazimirsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Simona Cazacu
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Rinat Meir
- Faculty of Engineering & Institutes of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Rachela Popovtzer
- Faculty of Engineering & Institutes of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Amir Dori
- Department of Neurology, Talpiot Medical Leadership Program, Chaim Sheba Medical Center, Ramat-Gan and Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Chaya Brodie
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel; Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA; ExoStem Biotec, Israel.
| |
Collapse
|
16
|
Ning X, Zhang H, Wang C, Song X. Exosomes Released by Gastric Cancer Cells Induce Transition of Pericytes Into Cancer-Associated Fibroblasts. Med Sci Monit 2018; 24:2350-2359. [PMID: 29668670 PMCID: PMC5922989 DOI: 10.12659/msm.906641] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are functionally and structurally essential for tumor progression. There are 3 main origins of CAFs: mesenchymal stem cells (MSCs), epithelial-to-mesenchymal (EMT) transition cells, and tissue-resident cells. Pericytes retain characteristics of progenitor cells and can differentiate into other cells under normal physiological conditions and into myofibroblasts under pathological conditions. Exosomes play an important role in intercellular communication by transferring membrane components and nucleic acids between different cells. In this study, we evaluated whether cancer cell-derived exosomes are involved in regulating the transition of pericytes to CAFs. Material/Methods Exosomes from GES-1 and SGC7901 cells were isolated by serial centrifugation and purified from the supernatant by the 30% sucrose/D2O cushion method. A transmission electron microscope was used to observe exosome morphologies, and nanoparticle tracking analysis was used to analyze size distribution of exosomes. Western blot analysis, immunofluorescent staining, and qPCR were employed to detect CAFs marker expression and signaling pathways involved in CAFs transition. Results Gastric cancer cell-derived exosomes enhanced pericytes proliferation and migration and induced the expression of CAFs marker in pericytes. We then demonstrated that the PI3K/AKT and MEK/ERK pathways were activated by tumor-derived exosomes, and BMP pathway inhibition reverses cancer exosomes-induced CAFs transition. Conclusions Our results suggest that gastric cancer cells induce the transition of pericytes to CAFs by exosomes-mediated BMP transfer and PI3K/AKT and MEK/ERK pathway activation, and suggest that pericytes may be an important source of CAFs.
Collapse
Affiliation(s)
- Xiaofei Ning
- Department of General Surgery, Second Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong, China (mainland)
| | - Hongran Zhang
- Department of Gastrointestinal, Affiliated Hospital of Jining Medical College, Jining, Shandong, China (mainland)
| | - Cong Wang
- Department of Ultrasound, Affiliated Hospital of Jining Medical College, Jining, Shandong, China (mainland)
| | - Xiuqi Song
- Department of General Surgery, Second Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong, China (mainland)
| |
Collapse
|
17
|
Pelatti MV, Gomes JPA, Vieira NMS, Cangussu E, Landini V, Andrade T, Sartori M, Petrus L, Zatz M. Transplantation of Human Adipose Mesenchymal Stem Cells in Non-Immunosuppressed GRMD Dogs is a Safe Procedure. Stem Cell Rev Rep 2017; 12:448-53. [PMID: 27193781 DOI: 10.1007/s12015-016-9659-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The possibility to treat Duchenne muscular dystrophy (DMD), a lethal X-linked disorder, through cell therapy with mesenchymal stromal cells (MSCs) has been widely investigated in different animal models. However, some crucial questions need to be addressed before starting human therapeutic trials, particularly regarding its use for genetic disorders. How safe is the procedure? Are there any side effects following mesenchymal stem cell transplantation? To address these questions for DMD the best model is the golden retriever muscular dystrophy dog (GRMD), which is the closest model to the human condition displaying a much longer lifespan than other models. Here we report the follow-up of 5 GRMD dogs, which were repeatedly transplanted with human adipose-derived mesenchymal stromal cells (hASC), derived from different donors. Xenogeneic cell transplantation, which was done without immunosuppression, was well tolerated in all animals with no apparent long-term adverse effect. In the present study, we show that repeated heterologous stem-cell injection is a safe procedure, which is fundamental before starting human clinical trials.
Collapse
Affiliation(s)
- M V Pelatti
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - J P A Gomes
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - N M S Vieira
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - E Cangussu
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - V Landini
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - T Andrade
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - M Sartori
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - L Petrus
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090
| | - Mayana Zatz
- Human Genome and Stem-cell Research Center, Institute of Biosciences, University of São Paulo, Rua do Matão, n.106 - Cidade Universitária, São Paulo, SP, Brasil, 05508-090.
| |
Collapse
|
18
|
Inhibition of Lysyl Oxidases Impairs Migration and Angiogenic Properties of Tumor-Associated Pericytes. Stem Cells Int 2017; 2017:4972078. [PMID: 28553358 PMCID: PMC5434472 DOI: 10.1155/2017/4972078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/05/2017] [Indexed: 12/30/2022] Open
Abstract
Pericytes are important cellular components of the tumor microenviroment with established roles in angiogenesis and metastasis. These two cancer hallmarks are modulated by enzymes of the LOX family, but thus far, information about LOX relevance in tumor-associated pericytes is lacking. Here, we performed a comparative characterization of normal and tumoral pericytes and report for the first time the modulatory effects of LOX enzymes on activated pericyte properties. Tumoral pericytes isolated from childhood ependymoma and neuroblastoma specimens displayed angiogenic properties in vitro and expressed typical markers, including CD146, NG2, and PDGFRβ. Expression of all LOX family members could be detected in both normal and tumor-associated pericytes. In most pericyte samples, LOXL3 was the family member displaying the highest transcript levels. Inhibition of LOX/LOXL activity with the inhibitor β-aminopropionitrile (βAPN) significantly reduced migration of pericytes, while proliferation rates were kept unaltered. Formation of tube-like structures in vitro by pericytes was also significantly impaired upon inhibition of LOX/LOXL activity with βAPN, which induced more prominent effects in tumor-associated pericytes. These findings reveal a novel involvement of the LOX family of enzymes in migration and angiogenic properties of pericytes, with implications in tumor development and in therapeutic targeting tumor microenvironment constituents.
Collapse
|
19
|
Dykstra JA, Facile T, Patrick RJ, Francis KR, Milanovich S, Weimer JM, Kota DJ. Concise Review: Fat and Furious: Harnessing the Full Potential of Adipose-Derived Stromal Vascular Fraction. Stem Cells Transl Med 2017; 6:1096-1108. [PMID: 28186685 PMCID: PMC5388064 DOI: 10.1002/sctm.16-0337] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/14/2016] [Accepted: 11/07/2016] [Indexed: 12/28/2022] Open
Abstract
Due to their capacity to self-renew, proliferate and generate multi-lineage cells, adult-derived stem cells offer great potential for use in regenerative therapies to stop and/or reverse degenerative diseases such as diabetes, heart failure, Alzheimer's disease and others. However, these subsets of cells can be isolated from different niches, each with differing potential for therapeutic applications. The stromal vascular fraction (SVF), a stem cell enriched and adipose-derived cell population, has garnered interest as a therapeutic in regenerative medicine due to its ability to secrete paracrine factors that accelerate endogenous repair, ease of accessibility and lack of identified major adverse effects. Thus, one can easily understand the rush to employ adipose-derived SVF to treat human disease. Perhaps faster than any other cell preparation, SVF is making its way to clinics worldwide, while critical preclinical research needed to establish SVF safety, efficacy and optimal, standardized clinical procedures are underway. Here, we will provide an overview of the current knowledge driving this phenomenon, its regulatory issues and existing studies, and propose potential unmapped applications. Stem Cells Translational Medicine 2017;6:1096-1108.
Collapse
Affiliation(s)
- Jordan A. Dykstra
- Children's Health Research Center, Sanford Research, Sioux FallsSouth DakotaUSA
| | - Tiffany Facile
- Children's Health Research Center, Sanford Research, Sioux FallsSouth DakotaUSA
| | - Ryan J. Patrick
- Children's Health Research Center, Sanford Research, Sioux FallsSouth DakotaUSA
| | - Kevin R. Francis
- Children's Health Research Center, Sanford Research, Sioux FallsSouth DakotaUSA
- Department of PediatricsThe University of South Dakota Sanford School of MedicineVermillion, South DakotaUSA
| | - Samuel Milanovich
- Children's Health Research Center, Sanford Research, Sioux FallsSouth DakotaUSA
- Department of PediatricsThe University of South Dakota Sanford School of MedicineVermillion, South DakotaUSA
| | - Jill M. Weimer
- Children's Health Research Center, Sanford Research, Sioux FallsSouth DakotaUSA
- Department of PediatricsThe University of South Dakota Sanford School of MedicineVermillion, South DakotaUSA
| | - Daniel J. Kota
- Children's Health Research Center, Sanford Research, Sioux FallsSouth DakotaUSA
| |
Collapse
|
20
|
Assoni A, Coatti G, Valadares MC, Beccari M, Gomes J, Pelatti M, Mitne-Neto M, Carvalho VM, Zatz M. Different Donors Mesenchymal Stromal Cells Secretomes Reveal Heterogeneous Profile of Relevance for Therapeutic Use. Stem Cells Dev 2016; 26:206-214. [PMID: 27762666 DOI: 10.1089/scd.2016.0218] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked disorder caused by null mutations in the dystrophin gene. Although the primary defect is the deficiency of muscle dystrophin, secondary events, including chronic inflammation, fibrosis, and muscle regeneration failure are thought to actively contribute to disease progression. Despite several advances, there is still no effective therapy for DMD. Therefore, the potential regenerative capacities, and immune-privileged properties of mesenchymal stromal cells (MSCs), have been the focus of intense investigation in different animal models aiming the treatment of these disorders. However, these studies have shown different outcomes according to the sources from which MSCs were obtained, which raise the question whether stem cells from distinct sources have comparable clinical effects. Here, we analyzed the protein content of the secretome of MSCs, isolated from three different sources (adipose tissue, skeletal muscle, and uterine tubes), obtained from five donors and evaluated their in vitro properties when cocultured with DMD myoblasts. All MSC lineages showed pathways enrichment related to protein metabolic process, oxidation-reduction process, cell proliferation, and regulation of apoptosis. We found that MSCs secretome proteins and their effect in vitro vary significantly according to the tissue and donors, including opposite effects in apoptosis assay, indicating the importance of characterizing MSC secretome profile before its use in animal and clinical trials. Despite the individual differences a pool of conditioned media from all MSCs lineages was able to delay apoptosis and enhance migration when in contact with DMD myoblasts.
Collapse
Affiliation(s)
- Amanda Assoni
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| | - Giuliana Coatti
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| | - Marcos C Valadares
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| | - Melinda Beccari
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| | - Juliana Gomes
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| | - Mayra Pelatti
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| | - Miguel Mitne-Neto
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil .,2 Fleury Group (Research and Development Department), São Paulo, Brazil
| | | | - Mayana Zatz
- 1 Human Genome and Stem Cell Research Center, Institute of Biosciences University of São Paulo , São Paulo, Brazil
| |
Collapse
|
21
|
Zatz M, Passos-Bueno MR, Vainzof M. Neuromuscular disorders: genes, genetic counseling and therapeutic trials. Genet Mol Biol 2016; 39:339-48. [PMID: 27575431 PMCID: PMC5004840 DOI: 10.1590/1678-4685-gmb-2016-0019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023] Open
Abstract
Neuromuscular disorders (NMD) are a heterogeneous group of genetic conditions, with autosomal dominant, recessive, or X-linked inheritance. They are characterized by progressive muscle degeneration and weakness. Here, we are presenting our major contributions to the field during the past 30 years. We have mapped and identified several novel genes responsible for NMD. Genotype-phenotype correlations studies enhanced our comprehension on the effect of gene mutations on related proteins and their impact on clinical findings. The search for modifier factors allowed the identification of a novel "protective"; variant which may have important implication on therapeutic developments. Molecular diagnosis was introduced in the 1980s and new technologies have been incorporated since then. Next generation sequencing greatly improved our capacity to identify disease-causing mutations with important benefits for research and prevention through genetic counseling of patients' families. Stem cells researches, from and for patients, have been used as tools to study human genetic diseases mechanisms and for therapies development. The clinical effect of preclinical trials in mice and canine models for muscular dystrophies are under investigation. Finally, the integration of our researches and genetic services with our post-graduation program resulted in a significant output of new geneticists, spreading out this expertise to our large country.
Collapse
Affiliation(s)
- Mayana Zatz
- Human Genome and Research Center (HUG-CELL), Instituto de
Biociências, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Maria Rita Passos-Bueno
- Human Genome and Research Center (HUG-CELL), Instituto de
Biociências, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Mariz Vainzof
- Human Genome and Research Center (HUG-CELL), Instituto de
Biociências, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
22
|
A novel lineage restricted, pericyte-like cell line isolated from human embryonic stem cells. Sci Rep 2016; 6:24403. [PMID: 27109637 PMCID: PMC4842973 DOI: 10.1038/srep24403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/29/2016] [Indexed: 12/22/2022] Open
Abstract
Pericytes (PCs) are endothelium-associated cells that play an important role in normal vascular function and maintenance. We developed a method comparable to GMP quality protocols for deriving self-renewing perivascular progenitors from the human embryonic stem cell (hESC), line ESI-017. We identified a highly scalable, perivascular progenitor cell line that we termed PC-A, which expressed surface markers common to mesenchymal stromal cells. PC-A cells were not osteogenic or adipogenic under standard differentiation conditions and showed minimal angiogenic support function in vitro. PC-A cells were capable of further differentiation to perivascular progenitors with limited differentiation capacity, having osteogenic potential (PC-O) or angiogenic support function (PC-M), while lacking adipogenic potential. Importantly, PC-M cells expressed surface markers associated with pericytes. Moreover, PC-M cells had pericyte-like functionality being capable of co-localizing with human umbilical vein endothelial cells (HUVECs) and enhancing tube stability up to 6 days in vitro. We have thus identified a self-renewing perivascular progenitor cell line that lacks osteogenic, adipogenic and angiogenic potential but is capable of differentiation toward progenitor cell lines with either osteogenic potential or pericyte-like angiogenic function. The hESC-derived perivascular progenitors described here have potential applications in vascular research, drug development and cell therapy.
Collapse
|
23
|
Human Mesenchymal Stromal Cells Transplantation May Enhance or Inhibit 4T1 Murine Breast Adenocarcinoma through Different Approaches. Stem Cells Int 2015; 2015:796215. [PMID: 26000020 PMCID: PMC4427122 DOI: 10.1155/2015/796215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 12/26/2022] Open
Abstract
The use of Mesenchymal Stromal Cells (MSCs) aiming to treat cancer has shown very contradictory results. In an attempt to clarify the contradictory results reported in the literature and the possible role of human fallopian tube Mesenchymal Stromal Cells (htMSCs) against breast cancer, the aim of this study was to evaluate the clinical effect of htMSCs in murine mammary adenocarcinoma using two different approaches: (1) coinjections of htMSCs and 4T1 murine tumor cell lineage and (2) injections of htMSCs in mice at the initial stage of mammary adenocarcinoma development. Coinjected animals had a more severe course of the disease and a reduced survival, while tumor-bearing animals treated with 2 intraperitoneal injections of 106 htMSCs showed significantly reduced tumor growth and increased lifespan as compared with control animals. Coculture of htMSCs and 4T1 tumor cells revealed an increase in IL-8 and MCP-1 and decreased VEGF production. For the first time, we show that MSCs isolated from a single source and donor when injected in the same animal model and tumor can lead to opposite results depending on the experimental protocol. Also, our results demonstrated that htMSCs can have an inhibitory effect on the development of murine mammary adenocarcinoma.
Collapse
|
24
|
Pierantozzi E, Badin M, Vezzani B, Curina C, Randazzo D, Petraglia F, Rossi D, Sorrentino V. Human pericytes isolated from adipose tissue have better differentiation abilities than their mesenchymal stem cell counterparts. Cell Tissue Res 2015; 361:769-78. [DOI: 10.1007/s00441-015-2166-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/02/2015] [Indexed: 01/07/2023]
|