1
|
Liu Y, Zhao H, Yu J, Liao D, Peng J, Chen C, Huang Y, Chen C, Li Z, Wijaya WA, Zhao Z, Chen Z. A Novel Laboratory-Based Strategy for Single Adipocyte and Adipose-Derived Stem Cells Extraction for Transplantation: An Experimental Research. Aesthetic Plast Surg 2025; 49:367-379. [PMID: 39340681 DOI: 10.1007/s00266-024-04383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Autologous fat grafting is widely used in plastic surgery. However, its main limitation is the low survival rate of fat grafts after transplantation. Transplantation of single adipocytes in combination with adipose-derived stem cells (ADSCs) could largely preserve the activity of the fat and improve graft survival. OBJECTIVE To verify the long-term survival rate of single adipocyte graft in vivo and its viable fat morphology for future fat grafting. METHODS Healthy adipose tissue was harvested and disassociated using fat dissociation solution, the Single-cell Suspension Preparation System (SSPS) was used to obtain a mixture of single adipocytes, ADSCs and stromal vascular fraction (SVF), and the structure of single adipocytes was verified by cell mask red and DAPI double staining. Nine male Balb/c nude mice were used, and three different graft volumes were established (0.05, 0.1 and 0.2 ml). For each mouse, four sites were selected for transplantation, one for macrofat and the other three for single adipocytes, and different transplant volumes 30, 60 and 90 days after transplantation. In each period, 3 mice were selected to measure the volume of fat graft. RESULTS Double staining with cell mask red and DAPI confirmed that the nucleus was identified intracellularly, which also indicated that the adipocytes in the single-cell suspension were structurally complete. When evaluating the transplantation, the groups with a volume of 0.05 ml and 0.2 ml performed better in the single-cell fat group in all transplantation periods, the group with a volume of 0.1 ml performed better in the single-cell group in the 30- and 60-day transplantation, and the differences were significant (P<0.05). CONCLUSION In this study, the SSPS was used to obtain a new transplant material containing single adipocytes and ADSCs by enzymatic hydrolysis of adipose tissue and converted into single cells. It effectively improved the survival rate of fat grafting and the long-term effect of transplantation. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
Affiliation(s)
- Yu Liu
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China
| | - Hanxing Zhao
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China
| | - Jiaying Yu
- Chengdu DosSense Biotech Co., LTD, Chengdu, People's Republic of China
| | - Dongsheng Liao
- Chengdu DosSense Biotech Co., LTD, Chengdu, People's Republic of China
| | - Jingming Peng
- Chengdu DosSense Biotech Co., LTD, Chengdu, People's Republic of China
| | - Changjin Chen
- TCM Regulating metabolic diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, People's Republic of China
| | - Yeqian Huang
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China
| | - Chiaoju Chen
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China
| | - Wilson Adrian Wijaya
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China
| | - Ziyi Zhao
- TCM Regulating metabolic diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, People's Republic of China.
| | - Zhixing Chen
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China.
| |
Collapse
|
2
|
Kuchakzadeh F, Ai J, Ebrahimi-Barough S. Tissue engineering and stem cell-based therapeutic strategies for premature ovarian insufficiency. Regen Ther 2024; 25:10-23. [PMID: 38108045 PMCID: PMC10724490 DOI: 10.1016/j.reth.2023.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Premature ovarian insufficiency (POI), also known as premature ovarian failure (POF), is a complex endocrine disease that commonly affects women under the age of 40. It is characterized by the cessation of ovarian function before the age of 40, leading to infertility and hormonal imbalances. The currently available treatment options for POI are limited and often ineffective. Tissue engineering and stem cell-based therapeutic strategies have emerged as promising approaches to restore ovarian function and improve the quality of life for women affected by POI. This review aims to provide a comprehensive overview of the types of stem cells and biomaterials used in the treatment of POI, including their biological characteristics and mechanisms of action. It explores various sources of stem cells, including embryonic stem cells, induced pluripotent stem cells, and adult stem cells, and their potential applications in regenerating ovarian tissue. Additionally, this paper discusses the development of biomaterials and scaffolds that mimic the natural ovarian microenvironment and support the growth and maturation of ovarian cells and follicles. Furthermore, the review highlights the challenges and ethical considerations associated with tissue engineering and stem cell-based therapies for POI and proposes potential solutions to address these issues. Overall, this paper aims to provide a comprehensive overview of the current state of research in tissue engineering and stem cell-based therapeutic strategies for POI and offers insights into future directions for improving treatment outcomes in this debilitating condition.
Collapse
Affiliation(s)
- Fatemeh Kuchakzadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Kim HK, Kim TJ. Current Status and Future Prospects of Stem Cell Therapy for Infertile Patients with Premature Ovarian Insufficiency. Biomolecules 2024; 14:242. [PMID: 38397479 PMCID: PMC10887045 DOI: 10.3390/biom14020242] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Premature ovarian insufficiency (POI), also known as premature menopause or premature ovarian failure, signifies the partial or complete loss of ovarian endocrine function and fertility before 40 years of age. This condition affects approximately 1% of women of childbearing age. Although 5-10% of patients may conceive naturally, conventional infertility treatments, including assisted reproductive technology, often prove ineffective for the majority. For infertile patients with POI, oocyte donation or adoption exist, although a prevalent desire persists among them to have biological children. Stem cells, which are characterized by their undifferentiated nature, self-renewal capability, and potential to differentiate into various cell types, have emerged as promising avenues for treating POI. Stem cell therapy can potentially reverse the diminished ovarian endocrine function and restore fertility. Beyond direct POI therapy, stem cells show promise in supplementary applications such as ovarian tissue cryopreservation and tissue engineering. However, technological and ethical challenges hinder the widespread clinical application of stem cells. This review examines the current landscape of stem cell therapy for POI, underscoring the importance of comprehensive assessments that acknowledge the diversity of cell types and functions. Additionally, this review scrutinizes the limitations and prospects associated with the clinical implementation of stem cell treatments for POI.
Collapse
Affiliation(s)
- Hye Kyeong Kim
- Department of Obstetrics & Gynecology, Infertility Center, CHA University Ilsan Medical Center, Goyang 10414, Republic of Korea;
| | - Tae Jin Kim
- Department of Urology, CHA University Ilsan Medical Center, CHA University School of Medicine, Goyang 10414, Republic of Korea
| |
Collapse
|
4
|
Yu S, Klomjit N, Jiang K, Zhu XY, Ferguson CM, Conley SM, Obeidat Y, Kellogg TA, McKenzie T, Heimbach JK, Lerman A, Lerman LO. Human Obesity Attenuates Cardioprotection Conferred by Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells. J Cardiovasc Transl Res 2023; 16:221-232. [PMID: 35616881 DOI: 10.1007/s12265-022-10279-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022]
Abstract
To explore the impact of obesity on reparative potency of adipose tissue-derived mesenchymal stromal/stem cells (A-MSC) in hypertensive cardiomyopathy, A-MSC were harvested from subcutaneous fat of obese and age-matched non-obese human subjects during bariatric or kidney donation surgeries, and then injected into mice 2 weeks after inducing renovascular hypertension (RVH) or sham surgery. Two weeks later, left ventricular (LV) function and deformation were estimated in vivo by micro-magnetic resonance imaging and myocardial damage ex vivo. Blood pressure and myocardial wall thickening were elevated in RVH + Vehicle and normalized only by lean-A-MSC. Both A-MSC types reduced LV mass and normalized the reduced LV peak strain radial in RVH, yet obese-A-MSC also impaired LV systolic function. A-MSC alleviated myocardial tissue damage in RVH, but lean-A-MSC decreased oxidative stress more effectively. Obese-A-MSC also showed increased cellular inflammation in vitro. Therefore, obese-A-MSC are less effective than lean-A-MSC in blunting hypertensive cardiomyopathy in mice with RVH.
Collapse
Affiliation(s)
- Shasha Yu
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Nattawat Klomjit
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Xiang Y Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Christopher M Ferguson
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Sabena M Conley
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Yasin Obeidat
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | | | | | | | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Organoids and Their Research Progress in Plastic and Reconstructive Surgery. Aesthetic Plast Surg 2022; 47:880-891. [PMID: 36401134 DOI: 10.1007/s00266-022-03129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/25/2022] [Indexed: 11/19/2022]
Abstract
Organoids are 3D structures generated from stem cells. Their functions and physiological characteristics are similar to those of normal organs. They are used in disease mechanism research, new drug development, organ transplantation and other fields. In recent years, the application of 3D materials in plastic surgery for repairing injuries, filling, tissue reconstruction and regeneration has also been investigated. The PubMed/MEDLINE database was queried to search for animal and human studies published through July of 2022 with search terms related to Organoids, Plastic Surgery, Pluripotent Stem Cells, Bioscaffold, Skin Reconstruction, Bone and Cartilage Regeneration. This review presents stem cells, scaffold materials and methods for the construction of organoids for plastic surgery, and it summarizes their research progress in plastic surgery in recent years.Level of Evidence III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
6
|
Liang Y, Yang C, Ye F, Cheng Z, Li W, Hu Y, Hu J, Zou L, Jiang H. Repair of the Urethral Mucosa Defect Model Using Adipose-Derived Stem Cell Sheets and Monitoring the Fate of Indocyanine Green-Labeled Sheets by Near Infrared-II. ACS Biomater Sci Eng 2022; 8:4909-4920. [PMID: 36201040 DOI: 10.1021/acsbiomaterials.2c00695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Treatment of urethral mucosa defects is a major challenge in urology. Synthetic materials or autologous mucosa does not provide satisfactory treatment options for long-term or large urethral mucosa defects. In response to this problem, we used autologous adipose-derived stem cells (ADSCs) to synthesize cell sheets in vitro for repairing urethral mucosa defect models. In order to monitor the localization and distribution of cell sheets in vivo, cells and sheets were labeled with indocyanine green (ICG) and the second near-infrared (NIR-II) fluorescence imaging was performed. ICG-based NIR-II imaging can successfully track ADSCs and sheets in vivo up to 8 W. Then, rabbit urethral mucosa defect models were repaired with ICG-ADSCs sheets. At 3 months after operation, retrograde urethrography showed that ADSC sheets could effectively repair urethral mucosa defect and restore urethral patency. Histological analysis showed that in ADSC sheet groups, continuous epithelial cells covered the urethra at the transplantation site, and a large number of vascular endothelial cells could also be seen. In the cell-free sheet group, there was no continuous epithelial cell coverage at the repair site of the urethra, and the expression of pro-inflammatory factor TNF-α was increased. It shows that the extracellular matrix alone without cells is not suitable for repairing urethral defects. Surviving ADSCs in the sheets may play a key role in the repair process. This study provides a new tracing method for tissue engineering to dynamically track grafts using an NIR-II imaging system. The ADSC sheets can effectively restore the structure and function of the urethra. It provides a new option for the repair of urethral mucosa defects.
Collapse
Affiliation(s)
- Yingchun Liang
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Zhang Cheng
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Weijian Li
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Yun Hu
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Jimeng Hu
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Lujia Zou
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China.,National Clinical Research Center for Aging and Medicine, Fudan University, 200040 Shanghai, China
| |
Collapse
|
7
|
Liu Q, Zhang P, Yuan X, Ya O, Li Q, Li J, Long Q. Investigate the stemness of adult adipose-derived stromal cells based on single-cell RNA-sequencing. Cell Biol Int 2022; 46:2118-2131. [PMID: 36150081 DOI: 10.1002/cbin.11898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 11/06/2022]
Abstract
The cellular heterogeneity and genetic features of stemness of adipose-derived stromal cells (ADSCs) remain unclear. Using single-cell RNA sequencing (scRNA-seq), we investigated the genomic features of the stemness gene in ADSCs with genetic variability. We cultured the ADSCs isolated from the fat waste of a healthy adult volunteers undergoing cosmetic plastic surgery to the third generation, used the BD Rhapsody platform to perform scRNA-seq, then used Monocle2 to analyze the growth and development trajectory of ADSCs, Cellular Trajectory Reconstruction Analysis Using Gene Counts and Expression (CytoTRACE) to evaluate the stemness gene characteristics in ADSCs clusters, and Beam to analyze the expression change characteristics of the main stemness related genes of ADSCs. According to the scRNA-seq data of 5325 ADSCs, they could be classified into nine cell clusters. According to CytoTRACE analysis, Cluster 3 of ADSCs had the highest stemness, whereas Cluster 8 had the lowest stemness. Pseudotime analysis revealed that Cluster 3 of ADSCs was primarily dispersed in the middle part of the growth and development trajectory, whereas Cluster 8 was primarily distributed at the end. We summarized the stemness of Cluster 3 in ADSCs with high expression of TPM1 and CCND1 genes in the metaphase of growth and development is the strongest, whereas the stemness of Cluster 8 with high expression of FICD, CREBRF, SDF2L1, HERPUD1, and HYOU1 genes in the telophase of growth and development is the weakest, providing a theoretical basis for screening and improving the therapeutic effect of ADSCs in cell transplantation research.
Collapse
Affiliation(s)
- Qing Liu
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan
| | - Pingshu Zhang
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan
| | - Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan
| | - Ou Ya
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan
| | - Qi Li
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, China
| | - Jing Li
- Radiology Department, Tangshan Maternal and Child Health Hospital, Tangshan, China
| | - Qingxi Long
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan
| |
Collapse
|
8
|
Lebeau G, Ah-Pine F, Daniel M, Bedoui Y, Vagner D, Frumence E, Gasque P. Perivascular Mesenchymal Stem/Stromal Cells, an Immune Privileged Niche for Viruses? Int J Mol Sci 2022; 23:ijms23148038. [PMID: 35887383 PMCID: PMC9317325 DOI: 10.3390/ijms23148038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play a critical role in response to stress such as infection. They initiate the removal of cell debris, exert major immunoregulatory activities, control pathogens, and lead to a remodeling/scarring phase. Thus, host-derived ‘danger’ factors released from damaged/infected cells (called alarmins, e.g., HMGB1, ATP, DNA) as well as pathogen-associated molecular patterns (LPS, single strand RNA) can activate MSCs located in the parenchyma and around vessels to upregulate the expression of growth factors and chemoattractant molecules that influence immune cell recruitment and stem cell mobilization. MSC, in an ultimate contribution to tissue repair, may also directly trans- or de-differentiate into specific cellular phenotypes such as osteoblasts, chondrocytes, lipofibroblasts, myofibroblasts, Schwann cells, and they may somehow recapitulate their neural crest embryonic origin. Failure to terminate such repair processes induces pathological scarring, termed fibrosis, or vascular calcification. Interestingly, many viruses and particularly those associated to chronic infection and inflammation may hijack and polarize MSC’s immune regulatory activities. Several reports argue that MSC may constitute immune privileged sanctuaries for viruses and contributing to long-lasting effects posing infectious challenges, such as viruses rebounding in immunocompromised patients or following regenerative medicine therapies using MSC. We will herein review the capacity of several viruses not only to infect but also to polarize directly or indirectly the functions of MSC (immunoregulation, differentiation potential, and tissue repair) in clinical settings.
Collapse
Affiliation(s)
- Grégorie Lebeau
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Franck Ah-Pine
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Service Anatomo-Pathologie, CHU de la Réunion, 97400 Saint-Denis, France
| | - Matthieu Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Yosra Bedoui
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Damien Vagner
- Service de Médecine Interne, CHU de la Réunion, 97400 Saint-Denis, France;
| | - Etienne Frumence
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Philippe Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
- Correspondence:
| |
Collapse
|
9
|
Song M, Zong J, Zou L, Fu Z, Liu J, Wang S. Biological debridement combined with stem cell therapy will be a convenient and efficient method for treating chronic wounds in the future. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Adipose-Derived Stem Cell-Incubated HA-Rich Sponge Matrix Implant Modulates Oxidative Stress to Enhance VEGF and TGF-β Secretions for Extracellular Matrix Reconstruction In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9355692. [PMID: 35082971 PMCID: PMC8786469 DOI: 10.1155/2022/9355692] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/20/2021] [Indexed: 12/11/2022]
Abstract
This study demonstrated both adipose-derived stem cells (ASCs) in vitro and in vivo combined with three-dimensional (3D) porous sponge matrices on implant wound healing. Sponge matrices were created from hyaluronic acid (HA), collagen (Col), and gelatin (Gel), constructing two types: HA-L (low content) and HA-H (high content), to be cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). Fourier transform infrared spectroscopy method verified carboxyl groups of HA and amino groups of Col and Gel reacting between the raw materials and scaffolds to identify the successive cross-linking. The swelling ratios of two types of sponge matrices were analyzed by water absorption capabilities, and the results displayed both over 30-fold dry scaffold weight enhancements. In biodegradation tests, matrices were hydrolyzed over time by three cutaneous enzymes, hyaluronidase, lysozyme, and collagenase I. ASCs from rats were cultured within the HA-H scaffold, demonstrating higher antioxidative abilities and secretions on related genes and proteins compared to the other two groups. The ASC HA-H matrix promoted cell proliferation to stimulate capillary angiogenesis inducer secretions, including vascular endothelial growth factor (VEGF) and transforming growth factor-β (TGF-β). In vivo histological examinations showed ASCs from implanted HA-H implant transported into the subcutis, and rat skin cells also infiltrated into the original matrix zone to increase the extracellular matrix (ECM) reconstructions. Our experimental data revealed that the ASC HA-H sponge implant was effective in improving wound repair.
Collapse
|
11
|
Fu YX, Ji J, Shan F, Li J, Hu R. Human mesenchymal stem cell treatment of premature ovarian failure: new challenges and opportunities. Stem Cell Res Ther 2021; 12:161. [PMID: 33658073 PMCID: PMC7931610 DOI: 10.1186/s13287-021-02212-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Premature ovarian failure (POF) is one of the common disorders found in women leading to 1% female infertility. Clinical features of POF are hypoestrogenism or estrogen deficiency, increased gonadotropin level, and, most importantly, amenorrhea. With the development of regenerative medicine, human mesenchymal stem cell (hMSC) therapy brings new prospects for POF. This study aimed to describe the types of MSCs currently available for POF therapy, their biological characteristics, and their mechanism of action. It reviewed the latest findings on POF to provide the theoretical basis for further investigation and clinical therapy.
Collapse
Affiliation(s)
- Yun-Xing Fu
- Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jing Ji
- Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Fang Shan
- Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jialing Li
- Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Rong Hu
- Reproductive Medicine Center, General Hospital of Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
12
|
Rosa I, Romano E, Fioretto BS, Matucci-Cerinic M, Manetti M. Adipose-derived stem cells: Pathophysiologic implications vs therapeutic potential in systemic sclerosis. World J Stem Cells 2021; 13:30-48. [PMID: 33584978 PMCID: PMC7859990 DOI: 10.4252/wjsc.v13.i1.30] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) residing in the stromal vascular fraction (SVF) of white adipose tissue are recently emerging as an alternative tool for stem cell-based therapy in systemic sclerosis (SSc), a complex connective tissue disorder affecting the skin and internal organs with fibrotic and vascular lesions. Several preclinical and clinical studies have reported promising therapeutic effects of fat grafting and autologous SVF/ADSC-based local treatment for facial and hand cutaneous manifestations of SSc patients. However, currently available data indicate that ADSCs may represent a double-edged sword in SSc, as they may exhibit a pro-fibrotic and anti-adipogenic phenotype, possibly behaving as an additional pathogenic source of pro-fibrotic myofibroblasts through the adipocyte-to-myofibroblast transition process. Thus, in the perspective of a larger employ of SSc-ADSCs for further therapeutic applications, it is important to definitely unravel whether these cells present a comparable phenotype and similar immunosuppressive, anti-inflammatory, anti-fibrotic and pro-angiogenic properties in respect to healthy ADSCs. In light of the dual role that ADSCs seem to play in SSc, this review will provide a summary of the most recent insights into the preclinical and clinical studies employing SVF and ADSCs for the treatment of the disease and, at the same time, will focus on the main findings highlighting the possible involvement of these stem cells in SSc-related fibrosis pathogenesis.
Collapse
Affiliation(s)
- Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence 50134, Italy
| | - Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence 50134, Italy.
| |
Collapse
|
13
|
Kemmochi A, Tamura T, Shimizu Y, Owada Y, Ozawa Y, Hisakura K, Oda T, Kawano Y, Hanawa T, Ohkohchi N. A novel hydrogel sheet prevents postoperative pancreatic fistula in a rat model. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2020; 28:192-201. [PMID: 33179402 PMCID: PMC7984228 DOI: 10.1002/jhbp.867] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Aim To evaluate the efficacy of a novel hydrogel sheet in preventing postoperative pancreatic fistula (POPF). Background Postoperative pancreatic fistula is a life‐threatening complication. As no study has reported the use of hydrogel sheets in preventing POPF, their effectiveness for that purpose remains unclear. Methods A novel hydrogel sheet made of polyvinyl alcohol (PVA) was prepared by the freeze‐thaw method. The pancreatic ducts and surrounding pancreatic parenchyma of rats were transected to induce a pancreatic fistula. Next, the sheet was attached to the transection site. Ascitic fluid amylase and lipase concentrations were measured. Neoveil®, a nonwoven polyglycolic acid (PGA) felt, is already clinically used as an absorbable reinforcing material at pancreatic transection sites. Neoveil® was used for comparison, as was VIEWGEL®, which is marketed as a wound dressing. Results The hydrogel sheet remained in place 48 hours postoperatively. The ascitic amylase concentrations in the control, VIEWGEL®‐treated, Neoveil®‐treated, and hydrogel‐treated rats, respectively, were 4992.4 ± 5355.7, 1068.4 ± 269.1, 730.2 ± 425.2, and 303.1 ± 240.1 IU/L; the ascitic lipase concentrations were 2279.8 ± 3395.2, 169.5 ± 100.6, 90.4 ± 71.0, and 86.8 ± 59.8 IU/L. The ascitic amylase and lipase levels were significantly lower in the hydrogel group than in the other groups (P < .05). Conclusions This novel hydrogel sheet effectively prevents pancreatic fistulas and has promising clinical application potential.
Collapse
Affiliation(s)
- Akira Kemmochi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takafumi Tamura
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshio Shimizu
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yohei Owada
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yusuke Ozawa
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Katsuji Hisakura
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yayoi Kawano
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Takehisa Hanawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Nobuhiro Ohkohchi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
14
|
Use of bioactive extracellular matrix fragments as a urethral bulking agent to treat stress urinary incontinence. Acta Biomater 2020; 117:156-166. [PMID: 33035698 DOI: 10.1016/j.actbio.2020.09.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/26/2020] [Accepted: 09/30/2020] [Indexed: 12/25/2022]
Abstract
Injection of urethral bulking agents is a low-risk, minimally invasive surgical procedure to treat stress urinary incontinence (SUI). In this study, we developed a promising injectable bulking agent comprising extracellular matrix fragments of adipose-derived stem cell sheets (ADSC ECM) and investigated its effectiveness in urethral bulking therapy. The structural integrity and proteins of ADSC sheet ECM were well retained in decellularized ADSC ECM fragments. To locate transplanted ADSC ECM fragments, they were labeled with ultrasmall super-paramagnetic iron oxide nanoparticles, which enabled in vivo monitoring after implantation in a SUI rat model for up to 4 weeks. When ADSC ECM fragments were injected into the rat urethra, they became fully integrated with the surrounding tissue within 1 week. Four weeks after transplantation, host cells had regenerated within the ADSC ECM fragment injection area. Moreover, new smooth muscle tissue had formed around the ADSC ECM fragments, as confirmed by positive staining of myosin. These results indicate that injection of ECM fragments may be a promising minimally invasive approach for treating SUI.
Collapse
|
15
|
Khalil W, Tiraihi T, Soleimani M, Baheiraei N, Zibara K. Conversion of Neural Stem Cells into Functional Neuron-Like Cells by MicroRNA-218: Differential Expression of Functionality Genes. Neurotox Res 2020; 38:707-722. [PMID: 32696438 DOI: 10.1007/s12640-020-00244-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/01/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Conversion of mesenchymal stem cells (MSC) into neuron-like cells (NLC) is a feasible cell therapy strategy for replacing lost neurons in neuronal disorders. In this study, adipose-derived MSC (ADMSC) were converted into neural stem cells (NSC) via neurosphere. The resulting NSC were then differentiated into NLC by transduction with microRNA-218, using a lentiviral vector. ADMSC, NSC, and NLC were first characterized by flow cytometry, RT-PCR, and immunocytochemistry. The functionality of the NLC was evaluated by qRT-PCR and patch clamp recording. Immunophenotyping of ADMSC showed their immunoreactivity to MSC markers CD90, CD73, CD105, and CD49d, but not to CD31 and CD45. RT-PCR results demonstrated the expression of nestin, neurogenin, neurod1, neurofilament light, and GAP43 genes in NSC while NLC expressed synaptophysin, neurofilament heavy, and GAP43. In addition, NSC morphology changed into multipolar with long processes after transduction with miR-218. Moreover, using qRT-PCR, the expression levels of miR-218 and functionality genes CACNA1C, SNAP25, KCNH1, KCNMA1, and SCN9A were significantly increased in NLC, compared with NSC, and ADMSC at 3 weeks and 5 months post-transduction. Furthermore, the generated NLC expressed significantly higher protein levels of neurofilament heavy polypeptide (NFh) and enolase 2 (Eno2) neuronal markers, compared with ADMSC and NSC. Finally, action potentials were successfully recorded by the generated NLC, using patch clamp. In summary, ADMSC-derived NSC differentiated into functional NLC by transduction with miR-218. The generated NLC expressed functional SNAP25, CACNA1C, KCNH1, KCNMA1, and SCN9A and produced an action potential, which provides useful insights into the generation of functional neuronal cells.
Collapse
Affiliation(s)
- Wissam Khalil
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Taki Tiraihi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nafiseh Baheiraei
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kazem Zibara
- Department of Biology, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
16
|
Hara T, Soyama A, Adachi T, Kobayashi S, Sakai Y, Maruya Y, Kugiyama T, Hidaka M, Okada S, Hamada T, Maekawa K, Ono S, Adachi T, Takatsuki M, Eguchi S. Ameliorated healing of biliary anastomosis by autologous adipose-derived stem cell sheets. Regen Ther 2020; 14:79-86. [PMID: 31988997 PMCID: PMC6970135 DOI: 10.1016/j.reth.2019.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/10/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Cell sheets consisting of adipose-derived stem cells (ADSCs) have been reported to be effective for wound healing. We conducted this study to clarify the efficacy of ADSC sheets in wound healing at the duct-to-duct biliary anastomotic site in pigs. METHODS Eleven female pigs (20-25 kg) were divided into two groups: biliary anastomosis with an ADSC sheet (n = 6) or without an ADSC sheet (n = 5). To follow the transplanted ADSCs, PKH26GL-labeled sheets were used in one of the ADSC pigs. Two weeks prior to laparotomy, ADSCs were isolated from the lower abdominal subcutaneous adipose tissue. After three passages, ADSCs were seeded on temperature-responsive culture dishes and collected as cell sheets. ADSC sheets were gently transplanted on the anastomotic site. We evaluated specimens by PKH26GL labeling, macroscopic changes, infiltration of inflammatory cells, and collagen content. RESULTS Labeled ADSCs remained around the bile duct wall. In the no-ADSC group, more adhesion developed at the hepatic hilum as observed during relaparotomy. Histopathological examination showed that the diameter and cross-sectional area of the bile duct wall were decreased in the ADSC group. In the no-ADSC group, a large number of inflammatory cells and more collagen fibers were identified in the bile duct wall. CONCLUSIONS The present study demonstrated that autologous ADSC sheet transplantation reduced hypertrophic changes in the bile duct wall at the anastomotic site. A long-term follow-up is required to evaluate the efficacy of this mechanism in prevention of biliary anastomotic strictures.
Collapse
Key Words
- ADSC, adipose-derived stem cell
- APC, allophycocyanin
- Adipose-derived stem cell
- Anastomotic healing
- BAS, biliary anastomotic strictures
- BMSC, bone marrow stem cells
- Biliary anastomosis
- CBD, common bile duct
- Cell sheet
- FBS, fetal bovine serum
- FGF, fibroblast growth factor
- HGF, hepatocyte growth factor
- MSC, mesenchymal stem cell
- VEGF, vascular endothelial growth factor
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| |
Collapse
|
17
|
Maj M, Kokocha A, Bajek A, Drewa T. The interplay between adipose-derived stem cells and bladder cancer cells. Sci Rep 2018; 8:15118. [PMID: 30310111 PMCID: PMC6181926 DOI: 10.1038/s41598-018-33397-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering approaches offer alternative strategies for urinary diversion after radical cystectomy. Possible triggering of cancer recurrence remains, however, a significant concern in the application of stem-cell based therapies for oncological patients. Soluble mediators secreted by stem cells induce tissue remodelling effects, but may also promote cancer cells growth and metastasis. We observed a substantial increase in the concentration of IL-6 and IL-8 in the secretome of adipose-derived stem cells (ASCs) co-cultured with bladder cancer cells. Concentrations of GM-CSF, MCP-1 and RANTES were also elevated. Bioactive molecules produced by ASCs increased the viability of 5637 and HT-1376 cells by respectively 15.4% and 10.4% (p < 0.0001). A trend in reduction of adhesion to ECM components was also noted, even though no differences in β-catenin expression were detected. When HT-1376 cells were co-cultured with ASCs their migration and invasion increased by 24.5% (p < 0.0002) and 18.2% (p < 0.002). Expression of p-ERK1/2 increased in 5637 cells (2.2-fold; p < 0.001) and p-AKT in HB-CLS-1 cells (2.0-fold; p < 0.001). Our results confirm that ASCs crosstalk with bladder cancer cells in vitro what influences their proliferation and invasive properties. Since ASCs tropism to tumour microenvironment is well documented their application towards post-oncologic reconstruction should be approached with caution.
Collapse
Affiliation(s)
- Malgorzata Maj
- Chair of Urology, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Karlowicza 24, 85-092, Bydgoszcz, Poland.
| | - Anna Kokocha
- Chair of Urology, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Karlowicza 24, 85-092, Bydgoszcz, Poland
| | - Anna Bajek
- Chair of Urology, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Karlowicza 24, 85-092, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Urology, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Karlowicza 24, 85-092, Bydgoszcz, Poland
| |
Collapse
|
18
|
Lu T, Pei W, Wang K, Zhang S, Chen F, Wu Y, Guan W. In vitro culture and biological properties of broiler adipose-derived stem cells. Exp Ther Med 2018; 16:2399-2407. [PMID: 30210592 PMCID: PMC6122567 DOI: 10.3892/etm.2018.6445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 05/04/2018] [Indexed: 02/07/2023] Open
Abstract
In the past 10 years, adipose-derived stem cells (ADSCs) have been applied due to their pluripotency. Experimental tissues have been frequently obtained from mammals, including rabbits, mice and humans, but rarely from broilers, Gallus gallus domesticus. In the present study, ADSCs were obtained from 20-day-old broiler embryos. Primary ADSCs were sub-cultured to passage 37 in vitro. The surface markers of ADSCs, namely CD29, CD31, CD44, CD71 and CD73, were detected by reverse transcription polymerase chain reaction and immunofluorescence assays. The result indicated that CD29, CD44, CD71 and CD73 were expressed on the surface of cells at various passages, but not CD31. The growth curve of cells at the different passages had a typical sigmoidal shape. Furthermore, ADSCs were successfully induced to differentiate into osteoblasts, adipocytes and hepatocyte-like cells. The results denote that the ADSCs isolated from broilers have similar biological properties to those of ADSCs obtained from other animals. The present study provided a theoretical and experimental foundation for the use of poultry as a source of stem cells, and laid a foundation for adipose tissue engineering and strategies in regenerative medicine.
Collapse
Affiliation(s)
- Tengfei Lu
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100193, P.R. China
| | - Wenhua Pei
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100193, P.R. China
| | - Kunfu Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin, Heilongjiang 150040, P.R. China
| | - Shuang Zhang
- Scientific Experiment Research Center, Harbin Sport University, Harbin, Heilongjiang 150008, P.R. China
| | - Fenghao Chen
- College of Human Movement Science, Harbin Sport University, Harbin, Heilongjiang 150008, P.R. China
| | - Yangnan Wu
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100193, P.R. China
| | - Weijun Guan
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100193, P.R. China
| |
Collapse
|
19
|
Louwen F, Ritter A, Kreis NN, Yuan J. Insight into the development of obesity: functional alterations of adipose-derived mesenchymal stem cells. Obes Rev 2018. [PMID: 29521029 DOI: 10.1111/obr.12679] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is associated with a variety of disorders including cardiovascular diseases, diabetes mellitus and cancer. Obesity changes the composition and structure of adipose tissue, linked to pro-inflammatory environment, endocrine/metabolic dysfunction, insulin resistance and oxidative stress. Adipose-derived mesenchymal stem cells (ASCs) have multiple functions like cell renewal, spontaneous repair and homeostasis in adipose tissue. In this review article, we have summarized the recent data highlighting that ASCs in obesity are defective in various functionalities and properties including differentiation, angiogenesis, motility, multipotent state, metabolism and immunomodulation. Inflammatory milieu, hypoxia and abnormal metabolites in obese tissue are crucial for impairing the functions of ASCs. Further work is required to explore the precise molecular mechanisms underlying its alterations and impairments. Based on these data, we suggest that deregulated ASCs, possibly also other mesenchymal stem cells, are important in promoting the development of obesity. Restoration of ASCs/mesenchymal stem cells might be an additional strategy to combat obesity and its associated diseases.
Collapse
Affiliation(s)
- F Louwen
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - A Ritter
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - N N Kreis
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - J Yuan
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
20
|
Mussano F, Genova T, Petrillo S, Roato I, Ferracini R, Munaron L. Osteogenic Differentiation Modulates the Cytokine, Chemokine, and Growth Factor Profile of ASCs and SHED. Int J Mol Sci 2018; 19:ijms19051454. [PMID: 29757956 PMCID: PMC5983594 DOI: 10.3390/ijms19051454] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023] Open
Abstract
Great efforts have been made to improve bone regeneration techniques owing to a growing variety of sources of stem cells suitable for autologous transplants. Specifically, adipose-derived stem cells (ASCs) and stems cells from human exfoliated deciduous teeth (SHED) hold great potential for bone tissue engineering and cell therapy. After a preliminary characterization of the main biomolecules ASCs and SHED released in their conditioned media, cells were kept both in normal and osteo-inducing conditions. Conventional assays were performed to prove their osteogenic potential such as quantitative real-time polymerase chain reaction (qRT-PCR) (for RUNX-2, collagen type I, osteopontin and osteonectin), alkaline phosphatase activity, osteocalcin production, and von Kossa staining. Conditioned media were tested again after the osteogenic induction and compared to maintaining condition both at base line and after 14 days of culture. The osteogenic condition inhibited the release of all the biomolecules, with the exception, concerning SHED, of growth-regulated alpha protein precursor (GROα), and, to a lesser extent, interleukin (IL)-8. In conclusion, our data support that undifferentiated ASCs and SHED may be preferable to committed ones for general cell therapy approaches, due to their higher paracrine activity. Osteoinduction significantly affects the cytokine, chemokine, and growth factor profile in a differential way, as SHED kept a more pronounced pro-angiogenic signature than ASCs.
Collapse
Affiliation(s)
- Federico Mussano
- CIR Dental School, Department of Surgical Sciences UNITO, via Nizza 230, 10126 Turin, Italy.
| | - Tullio Genova
- CIR Dental School, Department of Surgical Sciences UNITO, via Nizza 230, 10126 Turin, Italy.
- Department of Life Sciences and Systems Biology, UNITO, via Accademia Albertina 13, 10123 Turin, Italy.
| | - Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, UNITO, Via Nizza 52, 10126 Turin, Italy.
| | - Ilaria Roato
- Center for Research and Medical Studies, A.O.U. Città della Salute e della Scienza, 10126 Turin, Italy.
| | - Riccardo Ferracini
- Department of Surgical Sciences (DISC), Orthopaedic Clinic-IRCCS A.O.U. San Martino, 16132 Genoa, Italy.
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, UNITO, via Accademia Albertina 13, 10123 Turin, Italy.
| |
Collapse
|
21
|
Zhou L, Feng Y, Dai J, Ouyang J. [Research progress of miRNA regulation in differentiation of adipose-derived stem cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:1506-1511. [PMID: 29806396 DOI: 10.7507/1002-1892.201706076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Objective To review the research progress of miRNA regulation in the differentiation of adipose-derived stem cells (ADSCs). Methods The recent literature associated with miRNAs and differentiation of ADSCs was reviewed. The regulatory mechanism was analyzed in detail and summarized. Results The results indicate that the expression of miRNAs changes during differentiation of ADSCs. In addition, miRNAs regulate the differentiation of ADSCs into adipocytes, osteoblasts, chondrocytes, neurons, and hepatocytes by regulating the signaling pathways involved in cell differentiation. Conclusion Through controlling the differentiation of ADSCs by miRNAs, the suitable seed cell for tissue engineering can be established. The review will provide a theoretical basis for molecular targeted therapy and stem cell therapy in clinic.
Collapse
Affiliation(s)
- Lanting Zhou
- Medical College, Hubei University of Arts and Science, Xiangyang Hubei, 441053, P.R.China;Department of Anatomy, Southern Medical University, Guangzhou Guangdong, 510515, P.R.China
| | - Yanting Feng
- Department of Anatomy, Southern Medical University, Guangzhou Guangdong, 510515, P.R.China
| | - Jingxing Dai
- Department of Anatomy, Southern Medical University, Guangzhou Guangdong, 510515, P.R.China
| | - Jun Ouyang
- Department of Anatomy, Southern Medical University, Guangzhou Guangdong, 510515,
| |
Collapse
|
22
|
Brett E, Tevlin R, McArdle A, Seo EY, Chan CKF, Wan DC, Longaker MT. Human Adipose-Derived Stromal Cell Isolation Methods and Use in Osteogenic and Adipogenic In Vivo Applications. ACTA ACUST UNITED AC 2017; 43:2H.1.1-2H.1.15. [PMID: 29140567 DOI: 10.1002/cpsc.41] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adipose tissue represents an abundant and easily accessible source of multipotent cells, which may serve as excellent building blocks for tissue engineering. This article presents a newly described protocol for isolating adipose-derived stromal cells (ASCs) from human lipoaspirate, compared to the standard protocol for harvesting ASCs established in 2001. Human ASC isolation is performed using two methods, and resultant cells are compared through cell yield, cell viability, cell proliferation and regenerative potential. The osteogenic and adipogenic potential of ASCs isolated using both protocols are assessed in vitro and gene expression analysis is performed. The focus of this series of protocols is the regenerative potential of both cell populations in vivo. As such, the two in vivo animal models described are fat graft retention (soft tissue reconstruction) and calvarial defect healing (bone regeneration). The techniques described comprise fat grafting with cell assisted lipotransfer, and calvarial defect creation healed with cell-seeded scaffolds. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Elizabeth Brett
- Technical University Munich, Department of Plastic and Hand Surgery, Munich, Germany
| | - Ruth Tevlin
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Adrian McArdle
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Eun Young Seo
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Charles K F Chan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
23
|
Wiesner M, Berberich O, Hoefner C, Blunk T, Bauer-Kreisel P. Gap junctional intercellular communication in adipose-derived stromal/stem cells is cell density-dependent and positively impacts adipogenic differentiation. J Cell Physiol 2017; 233:3315-3329. [PMID: 28888046 DOI: 10.1002/jcp.26178] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/30/2017] [Indexed: 02/02/2023]
Abstract
Adipose-derived stromal/stem cells (ASCs) represent a widely used cell source with multi-lineage differentiation capacity in approaches for tissue engineering and regenerative medicine. Despite the multitude of literature on their differentiation capacity, little is reported about the physiological properties contributing to and controlling the process of lineage differentiation. Direct intercellular communication between adjacent cells via gap junctions has been shown to modulate differentiation processes in other cell types, with connexin 43 (Cx43) being the most abundant isoform of the gap junction-forming connexins. Thus, in the present study we focused on the expression of Cx43 and gap junctional intercellular communication (GJIC) in human ASCs, and its significance for adipogenic differentiation of these cells. Cx43 expression in ASCs was demonstrated histologically and on the gene and protein expression level, and was shown to be greatly positively influenced by cell seeding density. Functionality of gap junctions was proven by dye transfer analysis in growth medium. Adipogenic differentiation of ASCs was shown to be also distinctly elevated at higher cell seeding densities. Inhibition of GJIC by 18α-glycyrrhetinic acid (AGA) significantly compromised adipogenic differentiation, as demonstrated by histology, triglyceride quantification, and adipogenic marker gene expression. Flow cytometry analysis showed a lower proportion of cells undergoing adipogenesis when GJIC was inhibited, further indicating the importance of GJIC in the differentiation process. Altogether, this study demonstrates the impact of direct cell-cell communication via gap junctions on the adipogenic differentiation process of ASCs, and may contribute to further integrate direct intercellular crosstalk in rationales for tissue engineering approaches.
Collapse
Affiliation(s)
- Miriam Wiesner
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Wuerzburg, Wuerzburg, Germany
| | - Oliver Berberich
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Wuerzburg, Wuerzburg, Germany
| | - Christiane Hoefner
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Wuerzburg, Wuerzburg, Germany
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Wuerzburg, Wuerzburg, Germany
| | - Petra Bauer-Kreisel
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
24
|
Kaneko H, Kokuryo T, Yokoyama Y, Yamaguchi J, Yamamoto T, Shibata R, Gotoh M, Murohara T, Ito A, Nagino M. Novel therapy for pancreatic fistula using adipose-derived stem cell sheets treated with mannose. Surgery 2017; 161:1561-1569. [DOI: 10.1016/j.surg.2016.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 01/10/2023]
|
25
|
A Novel Method of Human Adipose-Derived Stem Cell Isolation with Resultant Increased Cell Yield. Plast Reconstr Surg 2017; 138:983e-996e. [PMID: 27537222 DOI: 10.1097/prs.0000000000002790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The authors have developed a novel protocol for isolating adipose-derived stem cells from human lipoaspirate. In this study, they compare their new method to a previously published standard protocol. METHODS Human adipose-derived stem cell isolation was performed using two methods to compare cell yield, cell viability, cell proliferation, and regenerative potential. The new and conventional isolation methods differ in two key areas: the collagenase digestion buffer constituents and the use of an orbital shaker. The osteogenic and adipogenic potential of adipose-derived stem cells isolated using both protocols was assessed in vitro, and gene expression analysis was performed. To assess the ability of the isolated cells to generate bone in vivo, the authors created critical-size calvarial defects in mice, which were treated with adipose-derived stem cells loaded onto hydroxyapatite-coated poly(lactic-co-glycolic acid) scaffolds. To test the ability of the isolated cells to enhance adipogenesis, the cells were added to lipoaspirate and placed beneath the scalp of immunocompromised mice. Fat graft volume retention was subsequently assessed by serial computed tomographic volumetric scanning. RESULTS The new method resulted in a 10-fold increased yield of adipose-derived stem cells compared with the conventional method. Cells harvested using the new method demonstrated significantly increased cell viability and proliferation in vitro (p < 0.05). New method cells also demonstrated significantly enhanced osteogenic and adipogenic differentiation capacity in vitro (p < 0.05) in comparison with the conventional method cells. Both cell groups demonstrated equivalent osteogenic and adipogenic regenerative potential in mice. CONCLUSIONS The authors have developed a protocol that maximizes the yield of adipose-derived stem cells derived from lipoaspirate. The new method cells have increased osteogenic and adipogenic potential in vitro and are not inferior to conventional method cells in terms of their ability to generate bone and fat in vivo. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, V.
Collapse
|
26
|
Zhang F, Ren H, Shao X, Zhuang C, Chen Y, Qi N. Preservation media, durations and cell concentrations of short-term storage affect key features of human adipose-derived mesenchymal stem cells for therapeutic application. PeerJ 2017; 5:e3301. [PMID: 28533959 PMCID: PMC5437859 DOI: 10.7717/peerj.3301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/11/2017] [Indexed: 12/17/2022] Open
Abstract
Background Adipose-derived mesenchymal stem cells (ADSCs) have shown great potential in the treatment of various diseases. However, the optimum short-term storage condition of ADSCs in 2∼8 °C is rarely reported. This study aimed at optimizing a short-term storage condition to ensure the viability and function of ADSCs before transplantation. Methods Preservation media and durations of storage were evaluated by cell viability, apoptosis, adhesion ability and colony-forming unit (CFU) capacity of ADSCs. The abilities of cell proliferation and differentiation were used to optimize cell concentrations. Optimized preservation condition was evaluated by cell surface markers, cell cycle and immunosuppressive capacity. Results A total of 5% human serum albumin in multiple electrolytes (ME + HSA) was the optimized medium with high cell viability, low cluster rate, good adhesion ability and high CFU capacity of ADSCs. Duration of storage should be limited to 24 h to ensure the quality of ADSCs before transplantation. A concentration of 5 × 106 cells/ml was the most suitable cell concentration with low late stage apoptosis, rapid proliferation and good osteogenic and adipogenic differentiation ability. This selected condition did not change surface markers, cell cycle, indoleamine 2, 3-dioxygenase 1 (IDO1) gene expression and kynurenine (Kyn) concentration significantly. Discussion In this study, ME + HSA was found to be the best medium, most likely due to the supplement of HSA which could protect cells, the physiological pH (7.4) of ME and sodium gluconate ingredient in ME which could provide energy for cells. Duration should be limited to 24 h because of reduced nutrient supply and increased waste and lactic acid accumulation during prolonged storage. To keep cell proliferation and limit lactic acid accumulation, the proper cell concentration is 5× 106 cells/ml. Surface markers, cell cycle and immunosuppressive capacity did not change significantly after storage using the optimized condition, which confirmed our results that this optimized short-term storage condition of MSCs has a great potential for the application of cell therapy.
Collapse
Affiliation(s)
- Fengli Zhang
- Cell Culture and Bioprocess Engineering Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Huaijuan Ren
- Cell Culture and Bioprocess Engineering Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohu Shao
- China Stem Cell Therapy Co., Limited, Shanghai, China
| | - Chao Zhuang
- Cell Culture and Bioprocess Engineering Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yantian Chen
- Cell Culture and Bioprocess Engineering Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Nianmin Qi
- Cell Culture and Bioprocess Engineering Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,China Stem Cell Therapy Co., Limited, Shanghai, China
| |
Collapse
|
27
|
Adipose-Derived Cell Transplantation in Systemic Sclerosis: State of the Art and Future Perspectives. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2016. [DOI: 10.5301/jsrd.5000222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Systemic sclerosis (SSc) is one of the most complex connective tissue diseases. Although significant progress in the knowledge of pathogenic mechanisms and timely diagnosis, therapeutic options remain limited. The attempt to find new treatments for SSc has led researchers to investigate the potential of cellular therapies using autologous and allogeneic stem cells. Multipotent mesenchymal stromal cells (MSCs) are considered an attractive candidate for cell-based therapies. MSCs comprise a heterogeneous population of cells with multilineage differentiation potential that are preferentially able to home to the sites of damage, and secrete various cytokines and growth factors that can have immunomodulatory, angiogenic, anti-inflammatory and anti-apoptotic effects. MSCs from bone-marrow have been first extensively characterized. Adipose tissue represents an additional abundant and accessible source of stem cells. Compared with BM-MSCs, adipose-derived stromal/stem cells (ASCs) offer several advantages, including ease of isolation, less donor morbidity, relative abundance, and rapidity of expansion. For all these reasons, at present ASCs are one of the most attractive and promising sources of adult stem cells for cell therapy, finding a field of application in the treatment of SSc, too. This review will focus on the current applications and possible future perspectives of adipose tissue-cell therapies in SSc.
Collapse
|
28
|
Wang WZ. Microcirculatory Response In Vivo on Local Intraarterial Infusion of Autogenic Adipose-derived Stem Cells or Stromal Vascular Fraction. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2016; 4:e1067. [PMID: 27757364 PMCID: PMC5055030 DOI: 10.1097/gox.0000000000001067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/12/2016] [Indexed: 01/25/2023]
Abstract
Both adipose-derived stem cells (ASCs) and stromal vascular fraction (SVF) have been demonstrated to have regenerative properties with therapeutic potential for numerous diseases through local or topical applications. However, it is unclear whether ASC or SVF can be delivered systemically through an intra-arterial infusion. The purpose of this study was to examine the microcirculatory response in vivo on local intraarterial infusion of autogenic ASCs or SVF in a vascular pedicle isolated rat cremaster microcirculation model. MATERIALS AND METHODS Fat tissue was surgically harvested from the flanks of male Sprague-Dawley rats (n = 12) and processed for SVF isolation. Some SVF samples were cultured for 24 hours for ASC purification. The autogenic SVF (1 × 105) cells (n = 6) or purified ASC (1 × 105) cells (n = 6) cells were infused into the microcirculation of cremaster muscle at a speed of 0.05 mL/min through the cannulation of femoral artery. As this is a vascular pedicle isolated preparation, the infused SVF or ASC cells went nowhere but the cremaster muscle. The video image of the microcirculation was monitored in real time during infusion. RESULTS Arteriole diameter was measured as A1 (100-160 µm), A2 (40-80 µm), and A3/A4 (10-30 µm). Capillary perfusion was quantified in 18 capillary fields of each muscle. There was a significant increase in the diameter of terminal arterioles (P = 0.049) and the capillary density (P = 0.02) after ASC intraarterial infusion. However, a significant cell aggregation, embolisms, and arterial obstruction were observed in the microcirculation in every case during SVF infusion. CONCLUSIONS Intraarterial infusion is an appropriate route for the delivery of autogenic ASCs, but not of SVF. SVF-induced microembolisms were the reason for narrowing or blocking the lumen of terminal arterioles, resulting in no flow in the corresponding capillaries.
Collapse
Affiliation(s)
- Wei Z Wang
- Division of Plastic Surgery, Department of Surgery, School of Medicine, University of Nevada, Las Vegas, Nev
| |
Collapse
|
29
|
Bajek A, Gurtowska N, Olkowska J, Kazmierski L, Maj M, Drewa T. Adipose-Derived Stem Cells as a Tool in Cell-Based Therapies. Arch Immunol Ther Exp (Warsz) 2016; 64:443-454. [PMID: 27178663 PMCID: PMC5085986 DOI: 10.1007/s00005-016-0394-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/20/2016] [Indexed: 02/06/2023]
Abstract
Recent development in stem cell isolation methods and expansion under laboratory conditions create an opportunity to use those aforementioned cells in tissue engineering and regenerative medicine. Particular attention is drawn towards mesenchymal stem cells (MSCs) being multipotent progenitors exhibiting several unique characteristics, including high proliferation potential, self-renewal abilities and multilineage differentiation into cells of mesodermal and non-mesodermal origin. High abundance of MSCs found in adipose tissue makes it a very attractive source of adult stem cells for further use in regenerative medicine applications. Despite immunomodulating properties of adipose-derived stem cells (ASCs) and a secretion of a wide variety of paracrine factors that facilitate tissue regeneration, effectiveness of stem cell therapy was not supported by the results of clinical trials. Lack of a single, universal stem cell marker, patient-to-patient variability, heterogeneity of ASC population combined with multiple widely different protocols of cell isolation and expansion hinder the ability to precisely identify and analyze biological properties of stem cells. The above issues contribute to conflicting data reported in literature. We will review the comprehensive information concerning characteristic features of ASCs. We will also review the regenerative potential and clinical application based on various clinical trials.
Collapse
Affiliation(s)
- Anna Bajek
- Department of Tissue Engineering, Nicolaus Copernicus University, Karłowicza 24, 85-092, Bydgoszcz, Poland.
| | - Natalia Gurtowska
- Department of Tissue Engineering, Nicolaus Copernicus University, Karłowicza 24, 85-092, Bydgoszcz, Poland
| | - Joanna Olkowska
- Department of Tissue Engineering, Nicolaus Copernicus University, Karłowicza 24, 85-092, Bydgoszcz, Poland
| | - Lukasz Kazmierski
- Department of Tissue Engineering, Nicolaus Copernicus University, Karłowicza 24, 85-092, Bydgoszcz, Poland
| | - Malgorzata Maj
- Department of Tissue Engineering, Nicolaus Copernicus University, Karłowicza 24, 85-092, Bydgoszcz, Poland
| | - Tomasz Drewa
- Department of Tissue Engineering, Nicolaus Copernicus University, Karłowicza 24, 85-092, Bydgoszcz, Poland.,Department of Urology, Nicolaus Copernicus Hospital, Torun, Poland
| |
Collapse
|
30
|
Epigenetic regulation of human adipose-derived stem cells differentiation. Mol Cell Biochem 2015; 410:111-20. [PMID: 26307369 DOI: 10.1007/s11010-015-2543-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/18/2015] [Indexed: 12/20/2022]
Abstract
Adult stem cells have more restricted differentiation potential than embryonic stem cells (ESCs), but upon appropriate stimulation can differentiate into cells of different germ layers. Epigenetic factors, including DNA modifications, take a significant part in regulation of pluripotency and differentiation of ESCs. Less is known about the epigenetic regulation of these processes in adult stem cells. Gene expression profile and location of DNA modifications in adipose-derived stem cells (ADSCs) and their osteogenically differentiated lineages were analyzed using Agilent microarrays. Methylation-specific PCR and restriction-based quantitative PCR were applied for 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) detection in selected loci. The level of DNA modifications in the POU5F1 locus was quantified with deep sequencing. Expression levels of selected genes were assayed by real-time PCR. ADSCs differentiation into osteogenic lineages involved marked changes in both 5mC and 5hmC profiles, but 5hmC changes were more abundant. 5mC losses and 5hmC gains were the main events observed during ADSCs differentiation, and were accompanied by increased expression of TET1 (P = 0.009). In ADSCs, POU5F1 was better expressed than NANOG or SOX2 (P ≤ 0.001). Both 5mC and 5hmC marks were present in the POU5F1 locus, but only hydroxymethylation of specific cytosine showed significant effect on the gene expression. In summary, the data of our study suggest significant involvement of changes in 5hmC profile during the differentiation of human adult stem cells.
Collapse
|
31
|
Zubin E, Conti V, Leonardi F, Zanichelli S, Ramoni R, Grolli S. Regenerative therapy for the management of a large skin wound in a dog. Clin Case Rep 2015; 3:598-603. [PMID: 26273450 PMCID: PMC4527804 DOI: 10.1002/ccr3.253] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/29/2014] [Accepted: 02/20/2015] [Indexed: 12/19/2022] Open
Abstract
Extensive full-thickness skin wounds are quite common in domestic animals. In these report, following the failure of reconstructive surgery, adipose tissue-derived mesenchymal stem cells, and platelet-rich plasma were successfully used in a dog to improve speed and quality of skin tissue healing, avoiding suffering, and debilitating effects.
Collapse
Affiliation(s)
- Elena Zubin
- Department of Veterinary Science, University of Parma Via del Taglio, 10 43126, Parma, Italy
| | - Virna Conti
- Department of Veterinary Science, University of Parma Via del Taglio, 10 43126, Parma, Italy
| | - Fabio Leonardi
- Department of Veterinary Science, University of Parma Via del Taglio, 10 43126, Parma, Italy
| | - Stefano Zanichelli
- Department of Veterinary Science, University of Parma Via del Taglio, 10 43126, Parma, Italy
| | - Roberto Ramoni
- Department of Veterinary Science, University of Parma Via del Taglio, 10 43126, Parma, Italy
| | - Stefano Grolli
- Department of Veterinary Science, University of Parma Via del Taglio, 10 43126, Parma, Italy
| |
Collapse
|