1
|
Pennarossa G, Arcuri S, Zmijewska A, Orini E, Gandolfi F, Brevini TAL. Bioengineering-tissue strategies to model mammalian implantation in vitro. Front Bioeng Biotechnol 2024; 12:1430235. [PMID: 39132254 PMCID: PMC11310004 DOI: 10.3389/fbioe.2024.1430235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
During mammalian implantation, complex and well-orchestrated interactions between the trophectoderm of implanting blastocysts and the maternal endometrium lead to a successful pregnancy. On the other hand, alteration in endometrium-blastocyst crosstalk often causes implantation failure, pregnancy loss, and complications that result in overall infertility. In domestic animals, this represents one of the major causes of economic losses and the understanding of the processes taking place during the early phases of implantation, in both healthy and pathological conditions, is of great importance, to enhance livestock system efficiency. Here we develop highly predictive and reproducible functional tridimensional (3D) in vitro models able to mimic the two main actors that play a key role at this developmental stage: the blastocyst and the endometrium. In particular, we generate a 3D endometrial model by co-culturing primary epithelial and stromal cells, isolated from sow uteri, onto highly porous polystyrene scaffolds. In parallel, we chemically reprogram porcine adult dermal fibroblasts and encapsulate them into micro-bioreactors to create trophoblast (TR) spheroids. Finally, we combine the generated artificial endometrium with the TR spheroids to model mammalian implantation in vitro and mimic the embryo-maternal interactions. The protocols here described allow the generation of reproducible and functional 3D models of both the maternal compartment as well as the implanting embryo, able to recreate in vitro the architecture and physiology of the two tissues in vivo. We suggest that these models can find useful applications to further elucidate early implantation mechanisms and to study the complex interactions between the maternal tissue and the developing embryos.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Lodi, Italy
| | - Sharon Arcuri
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Lodi, Italy
| | - Agata Zmijewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Elena Orini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università Degli Studi di Milano, Milan, Italy
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Lodi, Italy
| |
Collapse
|
2
|
Arcuri S, Pennarossa G, Pasquariello R, Prasadani M, Gandolfi F, Brevini TAL. Generation of Porcine and Rainbow Trout 3D Intestinal Models and Their Use to Investigate Astaxanthin Effects In Vitro. Int J Mol Sci 2024; 25:5966. [PMID: 38892151 PMCID: PMC11172962 DOI: 10.3390/ijms25115966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Astaxanthin (AST) is a natural compound derived from shellfish, microorganisms, and algae, with several healthy properties. For this reason, it is widely used in the diet of humans and animals, such as pigs, broilers, and fish, where its addition is related to its pigmenting properties. Moreover, AST's ability to reduce free radicals and protect cells from oxidative damage finds application during the weaning period, when piglets are exposed to several stressors. To better elucidate the mechanisms involved, here we generate ad hoc pig and rainbow trout in vitro platforms able to mimic the intestinal mucosa. The morphology is validated through histological and molecular analysis, while functional properties of the newly generated intestinal barriers, both in porcine and rainbow trout models, are demonstrated by measuring trans-epithelial electrical resistance and analyzing permeability with fluorescein isothiocyanate-dextran. Exposure to AST induced a significant upregulation of antioxidative stress markers and a reduction in the transcription of inflammation-related interleukins. Altogether, the present findings demonstrate AST's ability to interact with the molecular pathways controlling oxidative stress and inflammation both in the porcine and rainbow trout species and suggest AST's positive role in prevention and health.
Collapse
Affiliation(s)
- Sharon Arcuri
- Laboratory of Biomedical Embryology, Department of Veterinary Medicine and Animal Science and Center for Stem Cell Research, Università degli Studi di Milano, 26900 Lodi, Italy; (S.A.); (G.P.)
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Veterinary Medicine and Animal Science and Center for Stem Cell Research, Università degli Studi di Milano, 26900 Lodi, Italy; (S.A.); (G.P.)
| | - Rolando Pasquariello
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milan, Italy; (R.P.); (F.G.)
| | - Madhusha Prasadani
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia;
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milan, Italy; (R.P.); (F.G.)
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology, Department of Veterinary Medicine and Animal Science and Center for Stem Cell Research, Università degli Studi di Milano, 26900 Lodi, Italy; (S.A.); (G.P.)
| |
Collapse
|
3
|
Pennarossa G, Arcuri S, Gandolfi F, Brevini TAL. Generation of Artificial Blastoids Combining miR-200-Mediated Reprogramming and Mechanical Cues. Cells 2024; 13:628. [PMID: 38607067 PMCID: PMC11011911 DOI: 10.3390/cells13070628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
In vitro-generated blastocyst-like structures are of great importance since they recapitulate specific features or processes of early embryogenesis, thus avoiding ethical concerns as well as increasing scalability and accessibility compared to the use of natural embryos. Here, we combine cell reprogramming and mechanical stimuli to create 3D spherical aggregates that are phenotypically similar to those of natural embryos. Specifically, dermal fibroblasts are reprogrammed, exploiting the miR-200 family property to induce a high plasticity state in somatic cells. Subsequently, miR-200-reprogrammed cells are either driven towards the trophectoderm (TR) lineage using an ad hoc induction protocol or encapsulated into polytetrafluoroethylene micro-bioreactors to maintain and promote pluripotency, generating inner cell mass (ICM)-like spheroids. The obtained TR-like cells and ICM-like spheroids are then co-cultured in the same micro-bioreactor and, subsequently, transferred to microwells to encourage blastoid formation. Notably, the above protocol was applied to fibroblasts obtained from young as well as aged donors, with results that highlighted miR-200's ability to successfully reprogram young and aged cells with comparable blastoid rates, regardless of the donor's cell age. Overall, the approach here described represents a novel strategy for the creation of artificial blastoids to be used in the field of assisted reproduction technologies for the study of peri- and early post-implantation mechanisms.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Sharon Arcuri
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, 20133 Milan, Italy;
| |
Collapse
|
4
|
Ferronato GDA, Vit FF, da Silveira JC. 3D culture applied to reproduction in females: possibilities and perspectives. Anim Reprod 2024; 21:e20230039. [PMID: 38510565 PMCID: PMC10954237 DOI: 10.1590/1984-3143-ar2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/13/2023] [Indexed: 03/22/2024] Open
Abstract
In vitro cell culture is a well-established technique present in numerous laboratories in diverse areas. In reproduction, gametes, embryos, and reproductive tissues, such as the ovary and endometrium, can be cultured. These cultures are essential for embryo development studies, understanding signaling pathways, developing drugs for reproductive diseases, and in vitro embryo production (IVP). Although many culture systems are successful, they still have limitations to overcome. Three-dimensional (3D) culture systems can be close to physiological conditions, allowing greater interaction between cells and cells with the surrounding environment, maintenance of the cells' natural morphology, and expression of genes and proteins such as in vivo. Additionally, three-dimensional culture systems can stimulated extracellular matrix generating responses due to the mechanical force produced. Different techniques can be used to perform 3D culture systems, such as hydrogel matrix, hanging drop, low attachment surface, scaffold, levitation, liquid marble, and 3D printing. These systems demonstrate satisfactory results in follicle culture, allowing the culture from the pre-antral to antral phase, maintaining the follicular morphology, and increasing the development rates of embryos. Here, we review some of the different techniques of 3D culture systems and their applications to the culture of follicles and embryos, bringing new possibilities to the future of assisted reproduction.
Collapse
Affiliation(s)
| | - Franciele Flores Vit
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | | |
Collapse
|
5
|
Arcuri S, Pennarossa G, Ledda S, Gandolfi F, Brevini TAL. Use of Epigenetic Cues and Mechanical Stimuli to Generate Blastocyst-Like Structures from Mammalian Skin Dermal Fibroblasts. Methods Mol Biol 2024; 2767:161-173. [PMID: 37199907 DOI: 10.1007/7651_2023_486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mammalian embryogenesis is characterized by complex interactions between embryonic and extra-embryonic tissues that coordinate morphogenesis, coupling bio-mechanical and bio-chemical cues, to regulate gene expression and influence cell fate. Deciphering such mechanisms is essential to understand early embryogenesis, as well as to harness differentiation disorders. Currently, several early developmental events remain unclear, mainly due to ethical and technical limitations related to the use of natural embryos.Here, we describe a three-step approach to generate 3D spherical structures, arbitrarily defined "epiBlastoids," whose phenotype is remarkably similar to natural embryos. In the first step, adult dermal fibroblasts are converted into trophoblast-like cells, combining the use of 5-azacytidine, to erase the original cell phenotype, with an ad hoc induction protocol, to drive erased cells into the trophoblast lineage. In the second step, once again epigenetic erasing is applied, in combination with mechanosensing-related cues, to generate inner cell mass (ICM)-like spheroids. More specifically, erased cells are encapsulated in micro-bioreactors to promote 3D cell rearrangement and boost pluripotency. In the third step, chemically induced trophoblast-like cells and ICM-like spheroids are co-cultured in the same micro-bioreactors. The newly generated embryoids are then transferred to microwells, to encourage further differentiation and favor epiBlastoid formation. The procedure here described is a novel strategy for in vitro generation of 3D spherical structures, phenotypically similar to natural embryos. The use of easily accessible dermal fibroblasts and the lack of retroviral gene transfection make this protocol a promising strategy to study early embryogenesis as well as embryo disorders.
Collapse
Affiliation(s)
- Sharon Arcuri
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Centre for Stem Cell Research, Università degli Studi di Milano, Lodi, Italy
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Centre for Stem Cell Research, Università degli Studi di Milano, Lodi, Italy
| | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Centre for Stem Cell Research, Università degli Studi di Milano, Lodi, Italy
| |
Collapse
|
6
|
Verdile N, Camin F, Pavlovic R, Pasquariello R, Stuknytė M, De Noni I, Brevini TAL, Gandolfi F. Distinct Organotypic Platforms Modulate Rainbow Trout ( Oncorhynchus mykiss) Intestinal Cell Differentiation In Vitro. Cells 2023; 12:1843. [PMID: 37508507 PMCID: PMC10377977 DOI: 10.3390/cells12141843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
In vitro organotypic cell-based intestinal platforms, able to faithfully recapitulate the complex functions of the organ in vivo, would be a great support to search for more sustainable feed ingredients in aquaculture. We previously demonstrated that proliferation or differentiation of rainbow trout intestinal cell lines is dictated by the culture environment. The aim of the present work was to develop a culture platform that can efficiently promote cell differentiation into mature enterocytes. We compared four options, seeding the RTpiMI cell line derived from the proximal intestine on (1) polyethylene terephthalate (PET) culture inserts ThinCert™ (TC), (2) TC coated with the solubilized basement membrane matrix Matrigel® (MM), (3) TC with the rainbow trout fibroblast cell line RTskin01 embedded within the Matrigel® matrix (MMfb), or (4) the highly porous polystyrene scaffold Alvetex® populated with the abovementioned fibroblast cell line (AV). We evaluated the presence of columnar cells with a clear polarization of brush border enzymes, the formation of an efficient barrier with a significant increase in transepithelial electrical resistance (TEER), and its ability to prevent the paracellular flux of large molecules but allow the transit of small compounds (proline and glucose) from the apical to the basolateral compartment. All parameters improved moving from the simplest (TC) through the more complex platforms. The presence of fibroblasts was particularly effective in enhancing epithelial cell differentiation within the AV platform recreating more closely the complexity of the intestinal mucosa, including the presence of extracellular vesicles between fibroblasts and epithelial cells.
Collapse
Affiliation(s)
- Nicole Verdile
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| | - Federica Camin
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| | - Radmila Pavlovic
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy
- Proteomics and Metabolomics Facility, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| | - Milda Stuknytė
- Unitech COSPECT-University Technological Platform, University of Milan, 20133 Milan, Italy
| | - Ivano De Noni
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy
| | - Tiziana A L Brevini
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
7
|
Synergistic Effect of miR-200 and Young Extracellular Matrix-based Bio-scaffolds to Reduce Signs of Aging in Senescent Fibroblasts. Stem Cell Rev Rep 2023; 19:417-429. [PMID: 36029367 PMCID: PMC9418657 DOI: 10.1007/s12015-022-10438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 02/07/2023]
Abstract
Aging is defined as a complex, multifaceted degenerative process that causes a gradual decline of physiological functions and a rising mortality risk with time. Stopping senescence or even rejuvenating the body represent one of the long-standing human dreams. Somatic cell nuclear transfer as well as cell reprogramming have suggested the possibility to slow or even reverse signs of aging. We exploited miR-200 family ability to induce a transient high plasticity state in human skin fibroblasts isolated from old individuals and we investigated whether this ameliorates cellular and physiological hallmarks of senescence. In addition, based on the assumption that extracellular matrix (ECM) provides biomechanical stimuli directly influencing cell behavior, we examine whether ECM-based bio-scaffolds, obtained from decellularized ovaries of young swine, stably maintain the rejuvenated phenotype acquired by cells after miR-200 exposure. The results show the existence of multiple factors that cooperate to control a unique program, driving the cell clock. In particular, miR-200 family directly regulates the molecular mechanisms erasing cell senescence. However, this effect is transient, reversible, and quickly lost. On the other hand, the use of an adequate young microenvironment stabilizes the miR-200-mediated rejuvenating effects, suggesting that synergistic interactions occur among molecular effectors and ECM-derived biomechanical stimuli. The model here described is a useful tool to better characterize these complex regulations and to finely dissect the multiple and concurring biochemical and biomechanical cues driving the cell biological clock.
Collapse
|
8
|
Spatio-Temporal Changes of Extracellular Matrix (ECM) Stiffness in the Development of the Leech Hirudo verbana. Int J Mol Sci 2022; 23:ijms232415953. [PMID: 36555595 PMCID: PMC9787456 DOI: 10.3390/ijms232415953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The invertebrate leech Hirudo verbana represents a powerful experimental animal model for improving the knowledge about the functional interaction between the extracellular matrix (ECM) and cells within the tissue microenvironment (TME), and the key role played by ECM stiffness during development and growth. Indeed, the medicinal leech is characterized by a simple anatomical organization reproducing many aspects of the basic biological processes of vertebrates and in which a rapid spatiotemporal development is well established and easily assessed. Our results show that ECM structural organization, as well as the amount of fibrillar and non-fibrillar collagen are deeply different from hatching leeches to adult ones. In addition, the changes in ECM remodelling occurring during the different leech developmental stages, leads to a gradient of stiffness regulating both the path of migratory cells and their fates. The ability of cells to perceive and respond to changes in ECM composition and mechanics strictly depend on nuclear or cytoplasmic expression of Yes-Associated Protein 1 (YAP1), a key mediator converting mechanical signals into transcriptional outputs, expression, and activation.
Collapse
|
9
|
Langella A, Gadau SD, Serra E, Bebbere D, Ledda S. Microtubular Assessment of C6 Rat Glioma Cell Spheroids Developed in Transparent Liquid Marbles or Hanging Drops. BIOLOGY 2022; 11:biology11040492. [PMID: 35453692 PMCID: PMC9031767 DOI: 10.3390/biology11040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
Glioblastoma is a brain tumour frequently used as an experimental model to exploit innovative therapeutic approaches due to its high lethality and refractoriness to therapies. Part of these innovative anticancer therapies address cytoskeletal microtubules (MTs) since specific tubulin post-translational modifications (PTMs) are considered markers of tumour plasticity. In vitro studies, which traditionally employ two-dimensional (2D) culture systems, are now being replaced by three-dimensional (3D) systems that more closely mimic in vivo physiological conditions and allow a better understanding of the signalling between cells. In this work, we compared 2 liquid base 3D methods for the generation of spheroids from C6 rat glioma cells (RGCs) using 30 µL of liquid marble (LM) or the hanging drops (HDs), which contained 2 different cell numbers (5000 or 15,000). After 24 or 48 h of in vitro culture (IVC), the morphology of the spheroids was observed and the behaviour of the two main tubulin PTMs, tyrosinated α-tubulin (Tyr-T) and acetylated α-tubulin (Ac-T), was evaluated by fluorescence and Western blot (WB). RGCs spontaneously formed spherical agglomerates more rapidly in the LM than in the HD system. Cell density influenced the size of the spheroids, which reached a larger size (> of 300 µm Ø), with 15,000 cells compared to 5000 cells (150 µm Ø). Moreover, an increase in Tyr-T and Ac-T was observed in both the HD and LM system from 24 to 48 h, with the highest values shown in the 48 h/LM spheroids of 5000 cells (p < 0.05). In conclusion, by comparing the morphology and microtubular architecture of spheroids from C6 rat glioma cells developed by LM or HD methodology, our findings demonstrate that the use of a fumed silica microbioreactor boosts the induction and maintenance of a high plasticity state in glioma cells. RGCs cultured in LM express levels of tubulin PTMs that can be used to evaluate the efficacy of new anticancer therapies.
Collapse
|
10
|
Ovarian Decellularized Bioscaffolds Provide an Optimal Microenvironment for Cell Growth and Differentiation In Vitro. Cells 2021; 10:cells10082126. [PMID: 34440895 PMCID: PMC8393799 DOI: 10.3390/cells10082126] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Ovarian failure is the most common cause of infertility. Although numerous strategies have been proposed, a definitive solution for recovering ovarian functions and restoring fertility is currently unavailable. One innovative alternative may be represented by the development of an “artificial ovary” that could be transplanted in patients for re-establishing reproductive activities. Here, we describe a novel approach for successful repopulation of decellularized ovarian bioscaffolds in vitro. Porcine whole ovaries were subjected to a decellularization protocol that removed the cell compartment, while maintaining the macrostructure and microstructure of the original tissue. The obtained bioscaffolds were then repopulated with porcine ovarian cells or with epigenetically erased porcine and human dermal fibroblasts. The results obtained demonstrated that the decellularized extracellular matrix (ECM)-based scaffold may constitute a suitable niche for ex vivo culture of ovarian cells. Furthermore, it was able to properly drive epigenetically erased cell differentiation, fate, and viability. Overall, the method described represents a powerful tool for the in vitro creation of a bioengineered ovary that may constitute a promising solution for hormone and fertility restoration. In addition, it allows for the creation of a suitable 3D platform with useful applications both in toxicological and transplantation studies.
Collapse
|
11
|
Arcuri S, Pennarossa G, Gandolfi F, Brevini TAL. Generation of Trophoblast-Like Cells From Hypomethylated Porcine Adult Dermal Fibroblasts. Front Vet Sci 2021; 8:706106. [PMID: 34350230 PMCID: PMC8326560 DOI: 10.3389/fvets.2021.706106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
The first differentiation event in mammalian embryos is the formation of the trophectoderm, which is the progenitor of the outer epithelial components of the placenta, and which supports the fetus during the intrauterine life. However, the epigenetic and paracrine controls at work in trophectoderm differentiation are still to be fully elucidated and the creation of dedicated in vitro models is desirable to increase our understanding. Here we propose a novel approach based on the epigenetic conversion of adult dermal fibroblasts into trophoblast-like cells. The method combines the use of epigenetic erasing with an ad hoc differentiation protocol. Dermal fibroblasts are erased with 5-azacytidine (5-aza-CR) that confers cells a transient high plasticity state. They are then readdressed toward the trophoblast (TR) phenotype, using MEF conditioned medium, supplemented with bone morphogenetic protein 4 (BMP4) and inhibitors of the Activin/Nodal and FGF2 signaling pathways in low O2 conditions. The method here described allows the generation of TR-like cells from easily accessible material, such as dermal fibroblasts, that are very simply propagated in vitro. Furthermore, the strategy proposed is free of genetic modifications that make cells prone to instability and transformation. The TR model obtained may also find useful application in order to better characterize embryo implantation mechanisms and developmental disorders based on TR defects.
Collapse
Affiliation(s)
- Sharon Arcuri
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Centre for Stem Cell Research, UniStem, Università Degli Studi di Milano, Milan, Italy
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Centre for Stem Cell Research, UniStem, Università Degli Studi di Milano, Milan, Italy
| | - Fulvio Gandolfi
- Laboratory of Biomedical Embryology, Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy and Centre for Stem Cell Research, UniStem, Università Degli Studi di Milano, Milan, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Centre for Stem Cell Research, UniStem, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
12
|
Ooi CH, Vadivelu R, Jin J, Sreejith KR, Singha P, Nguyen NK, Nguyen NT. Liquid marble-based digital microfluidics - fundamentals and applications. LAB ON A CHIP 2021; 21:1199-1216. [PMID: 33656019 DOI: 10.1039/d0lc01290d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid marbles are droplets with volume typically on the order of microliters coated with hydrophobic powder. Their versatility, ease of use and low cost make liquid marbles an attractive platform for digital microfluidics. This paper provides the state of the art of discoveries in the physics of liquid marbles and their practical applications. The paper first discusses the fundamental properties of liquid marbles, followed by the summary of different techniques for the synthesis of liquid marbles. Next, manipulation techniques for handling liquid marbles are discussed. Applications of liquid marbles are categorised according to their use as chemical and biological reactors. The paper concludes with perspectives on the future development of liquid marble-based digital microfluidics.
Collapse
Affiliation(s)
- Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | | | | | | | | | | | | |
Collapse
|
13
|
Pennarossa G, Gandolfi F, Brevini TAL. "Biomechanical Signaling in Oocytes and Parthenogenetic Cells". Front Cell Dev Biol 2021; 9:646945. [PMID: 33644079 PMCID: PMC7905081 DOI: 10.3389/fcell.2021.646945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/25/2021] [Indexed: 12/26/2022] Open
Abstract
Oocyte-specific competence remains one of the major targets of current research in the field of reproduction. Several mechanisms are involved in meiotic maturation and the molecular signature of an oocyte is considered to reflect its quality and to predict its subsequent developmental and functional capabilities. In the present minireview, we focus on the possible role of mechanotransduction and mechanosensor signaling pathways, namely the Hippo and the RhoGTPase, in the maturing oocyte. Due to the limited access to female gametes, we propose the use of cells isolated from parthenogenetic embryos as a promising model to characterize and dissect the oocyte distinctive molecular signatures, given their exclusive maternal origin. The brief overview here reported suggests a role of the mechanosensing related pathways in oocyte quality and developmental competence and supports the use of uniparental cells as a useful tool for oocyte molecular signature characterization.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Fulvio Gandolfi
- Laboratory of Biomedical Embryology, Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy and Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
14
|
Pennarossa G, Arcuri S, De Iorio T, Gandolfi F, Brevini TAL. Current Advances in 3D Tissue and Organ Reconstruction. Int J Mol Sci 2021; 22:E830. [PMID: 33467648 PMCID: PMC7830719 DOI: 10.3390/ijms22020830] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/31/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Bi-dimensional culture systems have represented the most used method to study cell biology outside the body for over a century. Although they convey useful information, such systems may lose tissue-specific architecture, biomechanical effectors, and biochemical cues deriving from the native extracellular matrix, with significant alterations in several cellular functions and processes. Notably, the introduction of three-dimensional (3D) platforms that are able to re-create in vitro the structures of the native tissue, have overcome some of these issues, since they better mimic the in vivo milieu and reduce the gap between the cell culture ambient and the tissue environment. 3D culture systems are currently used in a broad range of studies, from cancer and stem cell biology, to drug testing and discovery. Here, we describe the mechanisms used by cells to perceive and respond to biomechanical cues and the main signaling pathways involved. We provide an overall perspective of the most recent 3D technologies. Given the breadth of the subject, we concentrate on the use of hydrogels, bioreactors, 3D printing and bioprinting, nanofiber-based scaffolds, and preparation of a decellularized bio-matrix. In addition, we report the possibility to combine the use of 3D cultures with functionalized nanoparticles to obtain highly predictive in vitro models for use in the nanomedicine field.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (G.P.); (S.A.); (T.D.I.)
| | - Sharon Arcuri
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (G.P.); (S.A.); (T.D.I.)
| | - Teresina De Iorio
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (G.P.); (S.A.); (T.D.I.)
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy;
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (G.P.); (S.A.); (T.D.I.)
| |
Collapse
|
15
|
All roads lead to Rome: the many ways to pluripotency. J Assist Reprod Genet 2020; 37:1029-1036. [PMID: 32198717 DOI: 10.1007/s10815-020-01744-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/12/2020] [Indexed: 12/23/2022] Open
Abstract
Cell pluripotency, spatial restriction, and development are spatially and temporally controlled by epigenetic regulatory mechanisms that occur without any permanent loss or alteration of genetic material, but rather through modifications "on top of it." These changes modulate the accessibility to transcription factors, either allowing or repressing their activity, thus shaping cell phenotype. Several studies have demonstrated the possibility to interact with these processes, reactivating silenced genes and inducing a high plasticity state, via an active demethylating effect, driven by ten-eleven translocation (TET) enzymes and an overall decrease of global methylation. In agreement with this, TET activities have been shown to be indispensable for mesenchymal to epithelial transition of somatic cells into iPSCs and for small molecule-driven epigenetic erasure. Beside the epigenetic mechanisms, growing evidences highlight the importance of mechanical forces in supporting cell pluripotency, which is strongly influenced by 3D rearrangement and mechanical properties of the surrounding microenvironment, through the activation of specific mechanosensing-related pathways. In this review, we discuss and provide an overview of small molecule ability to modulate cell plasticity and define cell fate through the activation of direct demethylating effects. In addition, we describe the contribution of the Hippo signaling mechanotransduction pathway as one of the mechanisms involved in the maintenance of pluripotency during embryo development and its induction in somatic cells.
Collapse
|
16
|
Brevini TAL, Pennarossa G, Gandolfi F. A 3D approach to reproduction. Theriogenology 2020; 150:2-7. [PMID: 31973966 DOI: 10.1016/j.theriogenology.2020.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 02/07/2023]
Abstract
For over a century, 2D cell culture has been extensively used for all the different research fields. However, this in vitro system does not allow to reproduce the natural structures of the original tissue, causing several changes and, in most cases, the loss of cell-to-cell communications and cell-to-extracellular matrix interactions. Based on this, during the last years, novel 3D platforms, able to mimic the in vivo milieu, are being developed. The advantages of the use of 3D models are: the reduction of the gap between cell culture and physiological environment; imitation of the specific architecture; partially maintenance of the mechanical and biochemical cues of the original tissue. Currently, 3D systems are used in a broad range of studies, including the field of reproduction, where they have been applied to promote maturation of follicles and oocytes and embryo culture. Here, we review 2D and 3D cell culture methods, discussing advantages and limitations of these techniques. We report the fundamental mechanisms involved in cell ability to perceive and respond to mechanical cues and their role in transmitting signals to and between cells and in regulating intracellular signaling pathways. In particular, we focus on the main effectors of the Hippo pathway, Yes-associated protein (YAP) and WW domain-containing transcription regulator protein 1 (TAZ), describing their behavior and function in oocytes and embryos. Lastly, we provide an overall perspective of the most recent 3D technologies developed in the field of reproduction, describing how their use may revolutionize the understanding of cellular behavior and provide novel tools, useful in reproductive technologies and livestock production.
Collapse
Affiliation(s)
- Tiziana A L Brevini
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133, Milan, Italy.
| | - Georgia Pennarossa
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133, Milan, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy University of Milan, Via Celoria 12, 20133, Milan, Italy
| |
Collapse
|
17
|
Gandolfi F, Arcuri S, Pennarossa G, Brevini TAL. New tools for cell reprogramming and conversion: Possible applications to livestock. Anim Reprod 2019; 16:475-484. [PMID: 32435291 PMCID: PMC7234139 DOI: 10.21451/1984-3143-ar2019-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Somatic cell nuclear transfer and iPS are both forms of radical cell reprogramming able to transform a fully differentiated cell type into a totipotent or pluripotent cell. Both processes, however, are hampered by low efficiency and, in the case of iPS, the application to livestock species is uncertain. Epigenetic manipulation has recently emerged as an efficient and robust alternative method for cell reprogramming. It is based upon the use of small molecules that are able to modify the levels of DNA methylation with 5-azacitidyne as one of the most widely used. Among a number of advantages, it includes the fact that it can be applied to domestic species including pig, dog and cat. Treated cells undergo a widespread demethylation which is followed by a renewed methylation pattern induced by specific chemical stimuli that lead to the desired phenotype. A detailed study of the mechanisms of epigenetic manipulation revealed that cell plasticity is achieved through the combined action of a reduced DNA methyl transferase activity with an active demethylation driven by the TET protein family. Surprisingly the same combination of molecular processes leads to the transformation of fibroblasts into iPS and regulate the epigenetic changes that take place during early development and, hence, during reprogramming following SCNT. Finally, it has recently emerged that mechanic stimuli in the form of a 3D cell rearrangement can significantly enhance the efficiency of epigenetic reprogramming as well as of maintenance of pluripotency. Interestingly these mechanic stimuli act on the same mechanisms both in epigenetic cell conversion with 5-Aza-CR and in iPS. We suggest that the balanced combination of epigenetic erasing, 3D cell rearrangement and chemical induction can go a long way to obtain ad hoc cell types that can fully exploit the current exiting development brought by gene editing and animal cloning in livestock production.
Collapse
Affiliation(s)
- Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Italy
| | - Sharon Arcuri
- Department of Health, Animal Science and Food Safety, University of Milan, Italy
| | - Georgia Pennarossa
- Department of Health, Animal Science and Food Safety, University of Milan, Italy
| | - Tiziana A L Brevini
- Department of Health, Animal Science and Food Safety, University of Milan, Italy
| |
Collapse
|