1
|
Fain JS, Wangermez C, Loriot A, Denoue C, De Smet C. DNA Hypomethylation Underlies Epigenetic Swapping between AGO1 and AGO1-V2 Isoforms in Tumors. EPIGENOMES 2024; 8:24. [PMID: 39051182 PMCID: PMC11270204 DOI: 10.3390/epigenomes8030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Human tumors progress in part by accumulating epigenetic alterations, which include gains and losses of DNA methylation in different parts of the cancer cell genome. Recent work has revealed a link between these two opposite alterations by showing that DNA hypomethylation in tumors can induce the expression of transcripts that overlap downstream gene promoters and thereby induce their hypermethylation. Preliminary in silico evidence prompted us to investigate if this mechanism applies to the locus harboring AGO1, a gene that plays a central role in miRNA biogenesis and RNA interference. Inspection of public RNA-Seq datasets and RT-qPCR experiments show that an alternative transcript starting 13.4 kb upstream of AGO1 (AGO1-V2) is expressed specifically in testicular germ cells, and becomes aberrantly activated in different types of tumors, particularly in tumors of the esophagus, stomach, and lung. This expression pattern classifies AGO1-V2 into the group of "Cancer-Germline" (CG) genes. Analysis of transcriptomic and methylomic datasets provided evidence that transcriptional activation of AGO1-V2 depends on DNA demethylation of its promoter region. Western blot experiments revealed that AGO1-V2 encodes a shortened isoform of AGO1, corresponding to a truncation of 75 aa in the N-terminal domain, and which we therefore referred to as "∆NAGO1". Interestingly, significant correlations between hypomethylation/activation of AGO1-V2 and hypermethylation/repression of AGO1 were observed upon examination of tumor cell lines and tissue datasets. Overall, our study reveals the existence of a process of interdependent epigenetic alterations in the AGO1 locus, which promotes swapping between two AGO1 protein-coding mRNA isoforms in tumors.
Collapse
Affiliation(s)
- Jean S. Fain
- Group of Genetics and Epigenetics, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.S.F.); (C.W.)
| | - Camille Wangermez
- Group of Genetics and Epigenetics, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.S.F.); (C.W.)
| | - Axelle Loriot
- Group of Computational Biology and Bioinformatics, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Claudia Denoue
- Group of Genetics and Epigenetics, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.S.F.); (C.W.)
| | - Charles De Smet
- Group of Genetics and Epigenetics, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.S.F.); (C.W.)
| |
Collapse
|
2
|
Yoodee S, Thongboonkerd V. Epigenetic regulation of epithelial-mesenchymal transition during cancer development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:1-61. [PMID: 37657856 DOI: 10.1016/bs.ircmb.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Epithelial-mesenchymal transition (EMT) plays essential roles in promoting malignant transformation of epithelial cells, leading to cancer progression and metastasis. During EMT-induced cancer development, a wide variety of genes are dramatically modified, especially down-regulation of epithelial-related genes and up-regulation of mesenchymal-related genes. Expression of other EMT-related genes is also modified during the carcinogenic process. Especially, epigenetic modifications are observed in the EMT-related genes, indicating their involvement in cancer development. Mechanically, epigenetic modifications of histone, DNA, mRNA and non-coding RNA stably change the EMT-related gene expression at transcription and translation levels. Herein, we summarize current knowledge on epigenetic regulatory mechanisms observed in EMT process relate to cancer development in humans. The better understanding of epigenetic regulation of EMT during cancer development may lead to improvement of drug design and preventive strategies in cancer therapy.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
3
|
Loaeza-Loaeza J, Cerecedo-Castillo AJ, Rodríguez-Ruiz HA, Castro-Coronel Y, Del Moral-Hernández O, Recillas-Targa F, Hernández-Sotelo D. DNMT3B overexpression downregulates genes with CpG islands, common motifs, and transcription factor binding sites that interact with DNMT3B. Sci Rep 2022; 12:20839. [PMID: 36460706 PMCID: PMC9718745 DOI: 10.1038/s41598-022-24186-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
DNA methylation is a key epigenetic modification to regulate gene expression in mammalian cells. Abnormal DNA methylation in gene promoters is common across human cancer types. DNMT3B is the main de novo methyltransferase enhanced in several primary tumors. How de novo methylation is established in genes related to cancer is poorly understood. CpG islands (CGIs), common sequences, and transcription factors (TFs) that interact with DNMT3B have been associated with abnormal de novo methylation. We initially identified cis elements associated with DNA methylation to investigate the contribution of DNMT3B overexpression to the deregulation of its possible target genes in an epithelial cell model. In a set of downregulated genes (n = 146) from HaCaT cells with DNMT3B overexpression, we found CGI, common sequences, and TFs Binding Sites that interact with DNMT3B (we called them P-down-3B). PPL1, VAV3, IRF1, and BRAF are P-down-3B genes that are downregulated and increased their methylation in DNMT3B presence. Together these findings suggest that methylated promoters aberrantly have some cis elements that could conduce de novo methylation by DNMT3B.
Collapse
Affiliation(s)
- Jaqueline Loaeza-Loaeza
- grid.412856.c0000 0001 0699 2934Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070 Chilpancingo, Guerrero Mexico
| | - Angel Josué Cerecedo-Castillo
- grid.9486.30000 0001 2159 0001Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Hugo Alberto Rodríguez-Ruiz
- grid.412856.c0000 0001 0699 2934Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070 Chilpancingo, Guerrero Mexico
| | - Yaneth Castro-Coronel
- grid.412856.c0000 0001 0699 2934Laboratorio de Citopatología e Inmunohistoquímica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070 Chilpancingo, Guerrero Mexico
| | - Oscar Del Moral-Hernández
- grid.412856.c0000 0001 0699 2934Laboratorio de Virus y Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070 Chilpancingo, Guerrero Mexico
| | - Félix Recillas-Targa
- grid.9486.30000 0001 2159 0001Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Daniel Hernández-Sotelo
- grid.412856.c0000 0001 0699 2934Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070 Chilpancingo, Guerrero Mexico
| |
Collapse
|
4
|
Wang Q, Xiong F, Wu G, Liu W, Chen J, Wang B, Chen Y. Gene body methylation in cancer: molecular mechanisms and clinical applications. Clin Epigenetics 2022; 14:154. [PMID: 36443876 PMCID: PMC9706891 DOI: 10.1186/s13148-022-01382-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
DNA methylation is an important epigenetic mechanism that regulates gene expression. To date, most DNA methylation studies have focussed on CpG islands in the gene promoter region, and the mechanism of methylation and the regulation of gene expression after methylation have been clearly elucidated. However, genome-wide methylation studies have shown that DNA methylation is widespread not only in promoters but also in gene bodies. Gene body methylation is widely involved in the expression regulation of many genes and is closely related to the occurrence and progression of malignant tumours. This review focusses on the formation of gene body methylation patterns, its regulation of transcription, and its relationship with tumours, providing clues to explore the mechanism of gene body methylation in regulating gene transcription and its significance and application in the field of oncology.
Collapse
Affiliation(s)
- Qi Wang
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Fei Xiong
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Guanhua Wu
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Wenzheng Liu
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Junsheng Chen
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Bing Wang
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Yongjun Chen
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| |
Collapse
|
5
|
Epigenetic regulation of fetal brain development in pig. Gene 2022; 844:146823. [PMID: 35988784 DOI: 10.1016/j.gene.2022.146823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 02/01/2023]
Abstract
How fetal brain development is regulated at the molecular level is not well understood. Due to ethical challenges associated with research on the human fetus, large animals particularly pigs are increasingly used to study development and disorders of fetal brain. The pig fetal brain grows rapidly during the last ∼ 50 days before birth which is around day 60 (d60) of pig gestation. But what regulates the onset of accelerated growth of the brain is unknown. The current study tests the hypothesis that epigenetic alteration around d60 is involved in the onset of rapid growth of fetal brain of pig. To test this hypothesis, DNA methylation changes of fetal brain was assessed in a genome-wide manner by Enzymatic Methyl-seq (EM-seq) during two gestational periods (GP): d45 vs. d60 (GP1) and d60 vs. d90 (GP2). The cytosine-guanine (CpG) methylation data was analyzed in an integrative manner with the RNA-seq data generated from the same brain samples from our earlier study. A neural network based modeling approach was implemented to learn changes in methylation patterns of the differentially expressed genes, and then predict methylations of the brain in a genome-wide manner during rapid growth. This approach identified specific methylations that changed in a mutually informative manner during rapid growth of the fetal brain. These methylations were significantly overrepresented in specific genic as well as intergenic features including CpG islands, introns, and untranslated regions. In addition, sex-bias methylations of known single nucleotide polymorphic sites were also identified in the fetal brain ide during rapid growth.
Collapse
|
6
|
Cain JA, Montibus B, Oakey RJ. Intragenic CpG Islands and Their Impact on Gene Regulation. Front Cell Dev Biol 2022; 10:832348. [PMID: 35223855 PMCID: PMC8873577 DOI: 10.3389/fcell.2022.832348] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
The mammalian genome is depleted in CG dinucleotides, except at protected regions where they cluster as CpG islands (CGIs). CGIs are gene regulatory hubs and serve as transcription initiation sites and are as expected, associated with gene promoters. Advances in genomic annotations demonstrate that a quarter of CGIs are found within genes. Such intragenic regions are repressive environments, so it is surprising that CGIs reside here and even more surprising that some resist repression and are transcriptionally active within a gene. Hence, intragenic CGI positioning within genes is not arbitrary and is instead, selected for. As a wealth of recent studies demonstrate, intragenic CGIs are embedded within genes and consequently, influence ‘host’ gene mRNA isoform length and expand transcriptome diversity.
Collapse
|