1
|
Wang Y, Chen H, Li Y, Hao H, Liu J, Chen Y, Meng J, Zhang S, Gu W, Lyu Z, Zang L, Mu Y. Predictive factors that influence the clinical efficacy of umbilical cord-derived mesenchymal stromal cells in the treatment of type 2 diabetes mellitus. Cytotherapy 2024; 26:311-316. [PMID: 38219142 DOI: 10.1016/j.jcyt.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/20/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Our previous single-center, randomized, double-blinded, placebo-controlled phase 2 study evaluated the safety and effectiveness of human umbilical cord mesenchymal stromal cell (UC-MSC) transfusion for treating patients with type 2 diabetes mellitus (T2DM). Indeed, this potential treatment strategy was able to reduce insulin use by half in a considerable number of patients. However, many other patients' responses to UC-MSC transfusion were insignificant. The selection of patients who might benefit from UC-MSC treatment is crucial from a clinical standpoint. METHODS In this post hoc analysis, 37 patients who received UC-MSC transfusions were divided into two groups based on whether their glycated hemoglobin (hemoglobin A1c, or HbA1c) level was less than 7% after receiving UC-MSC treatment. The baseline differences between the two groups were summarized, and potential factors influencing efficacy of UC-MSCs for T2DM were analyzed by univariate and multivariate logistic regression. The correlations between the relevant hormone levels and the treatment effect were further analyzed. RESULTS At the 9-week follow-up, 59.5% of patients achieved their targeted HbA1c level. Male patients with lower baseline HbA1c and greater C-peptide area under the curve (AUCC-pep) values responded favorably to UC-MSC transfusion, according to multivariate analysis. The effectiveness of UC-MSCs transfusion was predicted by AUCC-pep (cutoff value: 14.22 ng/h/mL). Further investigation revealed that AUCC-pep was increased in male patients with greater baseline testosterone levels. CONCLUSIONS Male patients with T2DM with greater AUCC-pep may be more likely to respond clinically to UC-MSC therapy, and further large-scale multi-ethnic clinical studies should be performed to confirm the conclusion.
Collapse
Affiliation(s)
- Yuepeng Wang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China; School of Medicine, Nankai University, Tianjin, China
| | - Haixu Chen
- Institute of Geriatrics & National Clinical Research Center of Geriatrics Disease, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yijun Li
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haojie Hao
- Department of Biotherapy, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiejie Liu
- Department of Biotherapy, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yulong Chen
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junhua Meng
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Saichun Zhang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Weijun Gu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhaohui Lyu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Zang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Yiming Mu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Ulyanova O, Askarov M, Baigenzhin A, Kozina L, Boltanova A, Serebrennikova D, Smelova A. Dynamics of Sex Hormones in Men with Diabetes Mellitus After Autologous Mesenchymal Stem Cell Transplant. EXP CLIN TRANSPLANT 2024; 22:281-284. [PMID: 38385413 DOI: 10.6002/ect.mesot2023.p85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
OBJECTIVES Our goal was to determine levels of sex hormones in men with type 1 diabetes mellitus and type 2 diabetes mellitus after autologous mesenchymal stem cell transplant. MATERIALS AND METHODS We examined 10 male patients (32-56 years old) with type 1 diabetes mellitus and type 2 diabetes mellitus, whom we subsequently divided into 2 groups and examined. Group 1 comprised 5 male patients who received autologous mesenchymal stem cell transplant (cells were obtained from patient's iliac crest and cultured for 3-4 weeks) by intravenous infusion. Group 2 comprised 5 male patients (control group) who were on hypoglycemic tablet therapy or insulin therapy. The quantity of autologous mesenchymal stem cells infused was 95 × 106 to 97 × 106 cells. We analyzed levels of testosterone, luteinizing hormone, estradiol, and glycated hemoglobin in patients both before and 3 months after the autologous mesenchymal stem cell transplant procedure. RESULTS In men with type 1 diabetes mellitus and type 2 diabetes mellitus, autologous mesenchymal stem cell transplant led to an increase in testosterone levels from 5.31 ± 2.12 to 6.33 ± 2.12 ng/mL (P = .82), a decrease in luteinizing hormone from 8.43 ± 1.25 to 5.94 ± 1.57 mIU/mL (P = .04), and a decrease in glycated hemoglobin from 9.45 ± 1.24% to 8.53 ± 1.08% (P = .25) after 3 months. The increase in testosterone in men with autologous mesenchymal stem cell transplant group of 6.33 ± 2.12 ng/mL was significant compared with men in the control group (3.9 ± 1.18 ng/mL; P = .01). CONCLUSIONS Testosterone level increased and luteinizing hormone level decreased within 3 months after autologous mesenchymal stem cell transplant in men with diabetes mellitus.
Collapse
Affiliation(s)
- Olga Ulyanova
- From the Department of Endocrine Disturbances, National Scientific Medical Center, Astana, Kazakhstan
| | | | | | | | | | | | | |
Collapse
|
3
|
Saltzman RG, G Campbell K, J Ripps S, Golan R, Cabreja-Castillo MA, Garzon AM, Rahman F, Caceres LV, Tovar JA, Khan A, Hare JM, Ramasamy R. The impact of cell-based therapy on female sexual dysfunction: a systematic review and meta-analysis. Sex Med Rev 2023; 11:333-341. [PMID: 37279578 DOI: 10.1093/sxmrev/qead023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Female sexual dysfunction (FSD) is a complex issue affecting women of all ages; it involves several overlapping body systems and profoundly affects quality of life. The use of cell-based therapy, such as mesenchymal stem cells, has recently been investigated as a potential treatment for FSD. OBJECTIVES This systematic review and meta-analysis aim to assess FSD outcomes following cell-based therapy. METHODS We evaluated peer-reviewed articles from multiple online databases through November 2022 to identify studies that used cell-based therapy and reported sexual function outcomes in women. We performed a meta-analysis using data pooled from 3 clinical trials at our institution: CRATUS (NCT02065245), ACESO (NCT02886884), and CERES (NCT03059355). All 3 trials collected data from the Sexual Quality of Life-Female (SQOL-F) questionnaire as an exploratory outcome. RESULTS Existing literature on this topic is scarce. Five clinical studies and 1 animal study were included in the systematic review, and only 2 clinical studies were considered good quality: 1 reported significant SQOL-F improvement in women 6 months after cell therapy, and 1 reported posttherapy sexual satisfaction in all women. When individual patient data were pooled in a meta-analysis from 29 women across 3 trials at our institution, the SQOL-F was not significantly improved. CONCLUSION Despite growing interest in cell-based therapy for women's sexual health, this important issue is understudied in the literature. The optimal route, source, and dose of cell therapy to produce clinically meaningful change have yet to be determined, and further research is needed in larger randomized placebo-controlled clinical trials.
Collapse
Affiliation(s)
- Russell G Saltzman
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Katherine G Campbell
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Sarah J Ripps
- College of Medicine, Florida State University, Tallahassee, FL 32304, United States
| | - Roei Golan
- College of Medicine, Florida State University, Tallahassee, FL 32304, United States
| | - Maria A Cabreja-Castillo
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Ana Maria Garzon
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Farah Rahman
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Lina V Caceres
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Jairo A Tovar
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
- Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, 33136. United States
| | - Ranjith Ramasamy
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| |
Collapse
|
4
|
Li J, Jiang Y, Xue W, Liu L, Yu H, Zhang X, Ye X, Miao J, Liu J, Chen Y, Lan X, Liu X, Yao W, Sun J, Zheng J, Xiao J. Effects of transplantation of umbilical cord blood mononuclear cells into the scrotum on sexual function in elderly mice. Regen Med 2023; 18:695-706. [PMID: 37554102 DOI: 10.2217/rme-2022-0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
Aim: This study investigated the effect of allografting umbilical cord blood mononuclear cells (UCBMCs) into the scrotum on sexual function in male elderly mice. Methods: UCBMCs were injected once into the scrotal sheath cavity of elderly mice. Results: The transplanted UCBMCs survived in the scrotal sheath cavity for 1 month. The mice had significantly increased blood testosterone concentrations, cyclic guanosine monophosphate (cGMP) levels and total nitric oxide synthase (T-NOS) activity in the corpus cavernosum and an increase in the number of mouse matings within 30 min (all p = 0.000). Conclusion: Scrotum-implanted UCBMCs improve the sexual function of male elderly mice through testosterone production and the NOS/cGMP pathway, which may provide an innovative transplantation approach for the treatment of erectile dysfunction.
Collapse
Affiliation(s)
- Jun Li
- Medical School, Ningde Normal University, Ningde, 352100, China
- Medical School, Kunming University, Kunming, 650214, China
| | - Yinghong Jiang
- Medical School, Kunming University, Kunming, 650214, China
| | - Wei Xue
- Medical School, Kunming University, Kunming, 650214, China
| | - Lejiang Liu
- Medical School, Kunming University, Kunming, 650214, China
| | - Hua Yu
- Medical School, Kunming University, Kunming, 650214, China
| | - Xuemei Zhang
- Medical School, Kunming University, Kunming, 650214, China
| | - Xiao Ye
- Medical School, Ningde Normal University, Ningde, 352100, China
| | - Jianrong Miao
- Medical School, Ningde Normal University, Ningde, 352100, China
| | - Jianling Liu
- Medical School, Ningde Normal University, Ningde, 352100, China
| | - Yueen Chen
- Medical School, Ningde Normal University, Ningde, 352100, China
| | - Xingbin Lan
- Medical School, Ningde Normal University, Ningde, 352100, China
| | - Xiaoqing Liu
- Medical School, Ningde Normal University, Ningde, 352100, China
| | - Wensong Yao
- Medical School, Ningde Normal University, Ningde, 352100, China
| | - Jianchuan Sun
- Medical School, Ningde Normal University, Ningde, 352100, China
| | - Jing Zheng
- Medical School, Ningde Normal University, Ningde, 352100, China
| | - Jianzhong Xiao
- Medical School, Ningde Normal University, Ningde, 352100, China
| |
Collapse
|
5
|
Hoang VT, Nguyen HP, Nguyen VN, Hoang DM, Nguyen TST, Nguyen Thanh L. “Adipose-derived mesenchymal stem cell therapy for the management of female sexual dysfunction: Literature reviews and study design of a clinical trial”. Front Cell Dev Biol 2022; 10:956274. [PMID: 36247008 PMCID: PMC9554747 DOI: 10.3389/fcell.2022.956274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Hormone imbalance and female sexual dysfunction immensely affect perimenopausal female health and quality of life. Hormone therapy can improve female hormone deficiency, but long-term use increases the risk of cardiovascular diseases and cancer. Therefore, it is necessary to develop a novel effective treatment to achieve long-term improvement in female general and sexual health. This study reviewed factors affecting syndromes of female sexual dysfunction and its current therapy options. Next, the authors introduced research data on mesenchymal stromal cell/mesenchymal stem cell (MSC) therapy to treat female reproductive diseases, including Asherman’s syndrome, premature ovarian failure/primary ovarian insufficiency, and vaginal atrophy. Among adult tissue-derived MSCs, adipose tissue-derived stem cells (ASCs) have emerged as the most potent therapeutic cell therapy due to their abundant presence in the stromal vascular fraction of fat, high proliferation capacity, superior immunomodulation, and strong secretion profile of regenerative factors. Potential mechanisms and side effects of ASCs for the treatment of female sexual dysfunction will be discussed. Our phase I clinical trial has demonstrated the safety of autologous ASC therapy for women and men with sexual hormone deficiency. We designed the first randomized controlled crossover phase II trial to investigate the safety and efficacy of autologous ASCs to treat female sexual dysfunction in perimenopausal women. Here, we introduce the rationale, trial design, and methodology of this clinical study. Because aging and metabolic diseases negatively impact the bioactivity of adult-derived MSCs, this study will use ASCs cultured in physiological oxygen tension (5%) to cope with these challenges. A total of 130 perimenopausal women with sexual dysfunction will receive two intravenous infusions of autologous ASCs in a crossover design. The aims of the proposed study are to evaluate 1) the safety of cell infusion based on the frequency and severity of adverse events/serious adverse events during infusion and follow-up and 2) improvements in female sexual function assessed by the Female Sexual Function Index (FSFI), the Utian Quality of Life Scale (UQOL), and the levels of follicle-stimulating hormone (FSH) and estradiol. In addition, cellular aging biomarkers, including plasminogen activator inhibitor-1 (PAI-1), p16 and p21 expression in T cells and the inflammatory cytokine profile, will also be characterized. Overall, this study will provide essential insights into the effects and potential mechanisms of ASC therapy for perimenopausal women with sexual dysfunction. It also suggests direction and design strategies for future research.
Collapse
Affiliation(s)
- Van T. Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
| | - Hoang-Phuong Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
| | - Viet Nhan Nguyen
- Vinmec International Hospital—Times City, Vinmec Health Care System, Hanoi, Vietnam
- College of Health Science, Vin University, Vinhomes Ocean Park, Hanoi, Vietnam
| | - Duc M. Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
| | - Tan-Sinh Thi Nguyen
- Vinmec International Hospital—Times City, Vinmec Health Care System, Hanoi, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
- Vinmec International Hospital—Times City, Vinmec Health Care System, Hanoi, Vietnam
- College of Health Science, Vin University, Vinhomes Ocean Park, Hanoi, Vietnam
- *Correspondence: Liem Nguyen Thanh,
| |
Collapse
|
6
|
Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK, Nguyen GH, Le PTT, Hoang VT, Forsyth NR, Heke M, Nguyen LT. Stem cell-based therapy for human diseases. Signal Transduct Target Ther 2022; 7:272. [PMID: 35933430 PMCID: PMC9357075 DOI: 10.1038/s41392-022-01134-4] [Citation(s) in RCA: 372] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023] Open
Abstract
Recent advancements in stem cell technology open a new door for patients suffering from diseases and disorders that have yet to be treated. Stem cell-based therapy, including human pluripotent stem cells (hPSCs) and multipotent mesenchymal stem cells (MSCs), has recently emerged as a key player in regenerative medicine. hPSCs are defined as self-renewable cell types conferring the ability to differentiate into various cellular phenotypes of the human body, including three germ layers. MSCs are multipotent progenitor cells possessing self-renewal ability (limited in vitro) and differentiation potential into mesenchymal lineages, according to the International Society for Cell and Gene Therapy (ISCT). This review provides an update on recent clinical applications using either hPSCs or MSCs derived from bone marrow (BM), adipose tissue (AT), or the umbilical cord (UC) for the treatment of human diseases, including neurological disorders, pulmonary dysfunctions, metabolic/endocrine-related diseases, reproductive disorders, skin burns, and cardiovascular conditions. Moreover, we discuss our own clinical trial experiences on targeted therapies using MSCs in a clinical setting, and we propose and discuss the MSC tissue origin concept and how MSC origin may contribute to the role of MSCs in downstream applications, with the ultimate objective of facilitating translational research in regenerative medicine into clinical applications. The mechanisms discussed here support the proposed hypothesis that BM-MSCs are potentially good candidates for brain and spinal cord injury treatment, AT-MSCs are potentially good candidates for reproductive disorder treatment and skin regeneration, and UC-MSCs are potentially good candidates for pulmonary disease and acute respiratory distress syndrome treatment.
Collapse
Affiliation(s)
- Duc M Hoang
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam.
| | - Phuong T Pham
- Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trung Q Bach
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Anh T L Ngo
- Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Quyen T Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trang T K Phan
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Giang H Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Phuong T T Le
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Van T Hoang
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Nicholas R Forsyth
- Institute for Science & Technology in Medicine, Keele University, Keele, UK
| | - Michael Heke
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Liem Thanh Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| |
Collapse
|
7
|
Low-Intensity Pulsed Ultrasound Enhanced Adipose-Derived Stem Cell-Mediated Angiogenesis in the Treatment of Diabetic Erectile Dysfunction through the Piezo-ERK-VEGF Axis. Stem Cells Int 2022; 2022:6202842. [PMID: 35935181 PMCID: PMC9355763 DOI: 10.1155/2022/6202842] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 01/02/2023] Open
Abstract
Objectives Erectile dysfunction is a major comorbidity of diabetes. Stem cell transplantation is a promising method to treat diabetic erectile dysfunction. In this study, we evaluated whether low-intensity pulsed ultrasound (LIPUS) could enhance the efficacy of adipose-derived stem cells (ADSCs) and investigated the underlying molecular mechanism. Materials and methods. Sixty 8-week-old male Sprague–Dawley rats were randomly divided into the normal control (NC) cohort or the streptozocin-induced diabetic ED cohort, which was further subdivided into DM, ADSC, LIPUS, and ADSC+LIPUS groups. Rats in the ADSC or ADSC+LIPUS group received ADSC intracavernosal injection. Rats in the LIPUS or ADSC+LIPUS group were treated with LIPUS. The intracavernous pressure (ICP) and mean arterial pressure (MAP) were recorded at Day 28 after injection. The corpus cavernosum tissues were harvested and subjected to histologic analysis and ELISA. The effects of LIPUS on proliferation and cytokine secretion capacity of ADSCs were assessed in vitro. RNA sequencing and bioinformatic analysis were applied to predict the mechanism involved, and western blotting and ELISA were used for verification. Results Rats in the ADSC+LIPUS group achieved significantly higher ICP and ICP/MAP ratios than those in the DM, ADSC, and LIPUS groups. In addition, the amount of cavernous endothelium and cGMP level also increased significantly in the ADSC+LIPUS group. In vitro experiments demonstrated that LIPUS promoted proliferation and cell cycle progression in ADSCs. The excretion of cytokines such as CXCL12, FGF2, and VEGF was also enhanced by LIPUS. Bioinformatic analysis based on RNA sequencing indicated that LIPUS stimulation might activate the MAPK pathway. We confirmed that LIPUS enhanced ADSC VEGF secretion through the Piezo-ERK pathway. Conclusion LIPUS enhanced the curative effects of ADSCs on diabetic erectile dysfunction through the activation of the Piezo-ERK-VEGF pathway. ADSC transplantation combined with LIPUS could be applied as a synergistic treatment for diabetic ED.
Collapse
|
8
|
Dam PTM, Hoang VT, Bui HTH, Hang LM, Hoang DM, Nguyen HP, Lien HT, Tran HTT, Nguyen XH, Nguyen Thanh L. Human Adipose-Derived Mesenchymal Stromal Cells Exhibit High HLA-DR Levels and Altered Cellular Characteristics under a Xeno-free and Serum-free Condition. Stem Cell Rev Rep 2021; 17:2291-2303. [PMID: 34510358 PMCID: PMC8599375 DOI: 10.1007/s12015-021-10242-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 01/22/2023]
Abstract
Background We have observed an increased expression of negative markers in some clinical-grade, xeno- and serum-free cultured adipose-derived mesenchymal stem/stromal cell (ADMSC) samples. It gave rise to concern that xeno- and serum-free conditions might have unexpected effects on human ADMSCs. This study aims to test this hypothesis for two xeno- and serum-free media, PowerStem MSC1 media (PS) and StemMACS MSC Expansion Media (SM), that support the in vitro expansion of ADMSCs. Methods We investigated the expression of negative markers in 42 clinical-grade ADMSC samples expanded in PS. Next, we cultured ADMSCs from seven donors in PS and SM and examined their growth and colony-forming ability, surface marker expression, differentiation, cell cycle and senescence, as well as genetic stability of two passages representing an early and late passage for therapeutic MSCs. Results 15 of 42 clinical-grade PS-expanded ADMSC samples showed an increased expression of negative markers ranging from 2.73% to 34.24%, which positively correlated with the age of donors. This rise of negative markers was related to an upregulation of Human Leukocyte Antigen – DR (HLA-DR). In addition, the PS-cultured cells presented decreased growth ability, lower frequencies of cells in S/G2/M phases, and increased ß-galactosidase activity in passage 7 suggesting their senescent feature compared to those grown in SM. Although MSCs of both PS and SM cultures were capable of multilineage differentiation, the PS-cultured cells demonstrated chromosomal abnormalities in passage 7 compared to the normal karyotype of their SM counterparts. Conclusions These findings suggest that the SM media is more suitable for the expansion of therapeutic ADMSCs than PS. The study also hints a change of ADMSC features at more advanced passages and with increased donor’s age. Thus, it emphasizes the necessity to cover these aspects in the quality control of therapeutic MSC products. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s12015-021-10242-7.
Collapse
Affiliation(s)
- Phuong T M Dam
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Health Care System, Hanoi, Vietnam
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Health Care System, Hanoi, Vietnam
| | - Hue Thi Hong Bui
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Health Care System, Hanoi, Vietnam
| | - Le Minh Hang
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Health Care System, Hanoi, Vietnam
| | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Health Care System, Hanoi, Vietnam
| | - Hoang Phuong Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Health Care System, Hanoi, Vietnam
| | - Ha Thi Lien
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Health Care System, Hanoi, Vietnam
| | - Huong Thi Thanh Tran
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Health Care System, Hanoi, Vietnam
| | - Xuan-Hung Nguyen
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Health Care System, Hanoi, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology (VRISG), Vinmec Health Care System, Hanoi, Vietnam.
| |
Collapse
|
9
|
Towe M, Peta A, Saltzman RG, Balaji N, Chu K, Ramasamy R. The use of combination regenerative therapies for erectile dysfunction: rationale and current status. Int J Impot Res 2021; 34:735-738. [PMID: 34253869 DOI: 10.1038/s41443-021-00456-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/01/2021] [Accepted: 06/21/2021] [Indexed: 11/09/2022]
Abstract
Erectile Dysfunction (ED) is defined as the inability to achieve and maintain an erection sufficient for sexual intercourse. Available treatments for ED provide only symptomatic relief, which is for the most part temporary. Regenerative therapies such as Low Intensity Shockwave, Platelet-Rich Plasma, and Stem Cell therapy can potentially provide a "cure" for ED by reversing the underlying pathology of ED rather than just treating the symptoms. Low Intensity Shockwave therapy is the most evidence based at this point and is thought to act by improving penile blood flow, repairing previous nerve damage, and activating stem cells. Stem Cell therapy takes advantage of the self-replicative potential of stem cells to create new corporal tissue, but also to recruit host cells and angiogenic factors to stimulate endogenous repair. Platelet-Rich Plasma therapy uses concentrated growth factors that already exist within the bloodstream to repair damaged nerves and increase penile blood flow. The use of combination restorative therapy may provide an additive or synergistic benefit greater than any one therapy alone because of its overlapping mechanisms of action on the penis but is a topic that remains to be studied.
Collapse
Affiliation(s)
- Maxwell Towe
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Akhil Peta
- Chicago Medical School at Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Russell G Saltzman
- Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Navin Balaji
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Kevin Chu
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Ranjith Ramasamy
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|